首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dark Fixation of CO(2) by Tobacco Leaves   总被引:7,自引:7,他引:0       下载免费PDF全文
  相似文献   

2.
3.
A mathematical model is developed which can be used to predict in vivo carbon isotope fractionations associated with carbon fixation in plants in terms of diffusion, CO2 hydration, and carboxylation components. This model also permits calculation of internal CO2 concentration for comparison with results of gas-exchange experiments. The isotope fractionations associated with carbon fixation in Kalanchoë daigremontiana and Bryophyllum tubiflorum have been measured by isolation of malic acid following dark fixation and enzymic determination of the isotopic composition of carbon-4 of this material. Corrections are made for residual malic acid, fumarase activity, and respiration. Comparison of these data with calculations from the model indicates that the rate of carbon fixation is limited principally by diffusion, rather than by carboxylation. Processes subsequent to the initial carboxylation also contribute to the over-all isotopic composition of the plant.  相似文献   

4.
5.
6.
The products of short time photosynthesis and of enhanced dark 14CO2 fixation (illumination in helium prior to addition of 14CO2 in dark) by Chlorella pyrenoidosa and Anacystis nidulans were compared. Glycerate 3-phosphate, phosphoenolpyruvate, alanine, and aspartate accounted for the bulk of the 14C assimilated during enhanced dark fixation while hexose and pentose phosphates accounted for the largest fraction of isotope assimilated during photosynthesis. During the enhanced dark fixation period, glycerate 3-phosphate is carboxyl labeled and glucose 6-phosphate is predominantly labeled in carbon atom 4 with lesser amounts in the upper half of the C6 chain and traces in carbon atoms 5 and 6. Tracer spread throughout all the carbon atoms of photosynthetically synthesized glycerate 3-phosphate and glucose 6-phosphate. During the enhanced dark fixation period, there was a slow formation of sugar phosphates which subsequently continued at 5 times the initial rate long after the cessation of 14CO2 uptake. To explain the kinetics of changes in the labelling patterns and in the limited formation of the sugar phosphates during enhanced dark CO2 fixation, the suggestion is made that most of the reductant mediating these effects did not have its origin in the preillumination phase.

It is concluded that a complete photosynthetic carbon reduction cycle operates to a limited extent, if at all, in the dark period subsequent to preillumination.

  相似文献   

7.
The role of phosphoenolpyruvate carboxylase in photosynthesis in the C3 plant Nicotiana tabacum has been probed by measurement of the 13C content of various materials. Whole leaf and purified ribulose bisphosphate carboxylase are within the range expected for C3 plants. Aspartic acid purified following acid hydrolysis of this ribulose bisphosphate carboxylase is enriched in 13C compared to whole protein. Carbons 1-3 of this aspartic acid are in the normal C3 range, but carbon-4 (obtained by treatment of the aspartic acid with aspartate β-decarboxylase) has an isotopic composition in the range expected for products of C4 photosynthesis (−5‰), and it appears that more than half of the aspartic acid is synthesized by phosphoenolpyruvate carboxylase using atmospheric CO2/HCO3. Thus, a primary role of phosphoenolpyruvate carboxylase in C3 plants appears to be the anapleurotic synthesis of four-carbon acids.  相似文献   

8.
9.
For the leaf succulent Agave deserti and the stem succulent Ferocactus acanthodes, increasing the ambient CO2 level from 350 microliters per liter to 650 microliters per liter immediately increased daytime net CO2 uptake about 30% while leaving nighttime net CO2 uptake of these Crassulacean acid metabolism (CAM) plants approximately unchanged. A similar enhancement of about 30% was found in dry weight gain over 1 year when the plants were grown at 650 microliters CO2 per liter compared with 350 microliters per liter. Based on these results plus those at 500 microliters per liter, net CO2 uptake over 24-hour periods and dry weight productivity of these two CAM succulents is predicted to increase an average of about 1% for each 10 microliters per liter rise in ambient CO2 level up to 650 microliters per liter.  相似文献   

10.
Brown PH  Outlaw WH 《Plant physiology》1982,70(6):1700-1703
When Vicia faba guard cell protoplasts were treated with fusicoccin, dark 14CO2 fixation rates increased by as much as 8-fold. Rate increase was saturated with less than 1 micromolar fusicoccin. Even after 6 minutes of dark 14CO2 fixation, more than 95% of the incorporated radioactivity was in stable products derived from carboxylation of phosphoenolpyruvate (about 50% and 30% in malate and aspartate, respectively). The relative distribution of 14C among products and in the C-4 position of malate (initially more than 90% of [14C]malate) was independent of fusicoccin concentration. After incubation in the dark, malate content was higher in protoplasts treated with fusicoccin. A positive correlation was observed between the amounts of 14CO2 fixed and malate content.

It was concluded that (a) fusicoccin causes an increase in the rate of dark 14CO2 fixation without alteration of the relative fluxes through pathways by which it is metabolized, (b) fusicoccin causes an increase in malate synthesis, and (c) dark 14CO2 fixation and malate synthesis are mediated by phosphoenolpyruvate carboxylase.

  相似文献   

11.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

12.
Dark CO(2) Fixation and its Role in the Growth of Plant Tissue   总被引:9,自引:8,他引:1       下载免费PDF全文
Experiments were designed to determine the significance of dark CO2 fixation in excised maize roots, carrot slices and excised tomato roots grown in tissue culture. Bicarbonate-14C was used to determine the pathway and amounts of CO2 fixation, while leucine-14C was used to estimate protein synthesis in tissues aerated with various levels of CO2.

Organic acids were labeled from bicarbonate-14C, with malate being the major labeled acid. Only glutamate and aspartate were labeled in the amino acid fraction and these 2 amino acids comprised over 90% of the 14C label in the ethanol-water insoluble residue.

Studies with leucine-14C as an indicator of protein synthesis in carrot slices and tomato roots showed that those tissues aerated with air incorporated 33% more leucine-14C into protein than those aerated with CO2-free air. Growth of excised tomato roots aerated with air was 50% more than growth of tissue aerated with CO2-free air. These studies are consistent with the suggestion that dark fixation of CO2 is involved in the growth of plant tissues.

  相似文献   

13.
The CO2 compensation point of the submersed aquatic macrophyte Hydrilla verticillata varied from high (above 50 microliters per liter) to low (10 to 25 microliters per liter) values, depending on the growth conditions. Plants from the lake in winter or after incubation in an 11 C/9-hour photoperiod had high values, whereas summer plants or those incubated in a 27 C/14-hour photoperiod had low values. The plants with low CO2 compensation points exhibited dark 14CO2 fixation rates that were up to 30% of the light fixation rates. This fixation reduced respiratory CO2 loss, but did not result in a net uptake of CO2 at night. The low compensation point plants also showed diurnal fluctuations in titratable acid, such as occur in Crassulacean acid metabolism plants. However, dark fixation and diurnal acid fluctuations were negligible in Hydrilla plants with high CO2 compensation points.  相似文献   

14.
Phosphoenolpyruvate carboxylase (PEPc) catalyzes the primary fixation of CO2 in Crassulacean acid metabolism plants. Flux through the enzyme is regulated by reversible phosphorylation. PEPc kinase is controlled by changes in the level of its translatable mRNA in response to a circadian rhythm. The physiological significance of changes in the levels of PEPc-kinase-translatable mRNA and the involvement of metabolites in control of the kinase was investigated by subjecting Kalanchoë daigremontiana leaves to anaerobic conditions at night to modulate the magnitude of malate accumulation, or to a rise in temperature at night to increase the efflux of malate from vacuole to cytosol. Changes in CO2 fixation and PEPc kinase activity reflected those in kinase mRNA. The highest rates of CO2 fixation and levels of kinase mRNA were observed in leaves subjected to anaerobic treatment for the first half of the night and then transferred to ambient air. In leaves subjected to anaerobic treatment overnight and transferred to ambient air at the start of the day, PEPc-kinase-translatable mRNA and activity, the phosphorylation state of PEPc, and fixation of atmospheric CO2 were significantly higher than those for control leaves for the first 3 h of the light period. A nighttime temperature increase from 19°C to 27°C led to a rapid reduction in kinase mRNA and activity; however, this was not observed in leaves in which malate accumulation had been prevented by anaerobic treatment. These data are consistent with the hypothesis that a high concentration of malate reduces both kinase mRNA and the accumulation of the kinase itself.  相似文献   

15.
16.
This study examines the capacity of intact spinach (Spinacia oleracea L.) chloroplasts to fix 14CO2 when supplied with Benson-Calvin cycle intermediates in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU). Under these conditions, substantial 14CO2 fixation occurred in the light but not in the dark when either dihydroxyacetone phosphate, ribulose 5-phosphate, fructose 6-phosphate, or fructose bisphosphate was added. The highest rate of 14CO2 fixation (20-40 micromoles per milligram chlorophyll per hour) was obtained with dihydroxyacetone phosphate. In contrast, no 14CO2 fixation occurred when 3-phosphoglycerate was used. 14CO2 fixation in the presence of dihydroxyacetone phosphate and DCMU was inhibited by carbonylcyanide m-chlorophenylhydrazone, dl-glyceraldehyde, and pyridoxal 5′-phosphate. Low concentrations of O2 (25-50 micromolar) stimulated 14CO2 fixation, but the activity decreased with increasing O2 concentrations. The fixation of 14CO2 in the presence of DCMU and dihydroxyacetone phosphate was also observed in maize bundle sheath cells. These results provide direct evidence for cyclic photophosphorylation in intact chloroplasts. The activity measured is adequate to support all the extra ATP requirements for maximum rates of photosynthesis in these intact chloroplasts.  相似文献   

17.
The increase in dark CO2 fixation during cold storage of Gladiolus x gandavensis van Houtte-type grandiflorus cormels is used to monitor changes in their state of dormancy. Dark fixation is also promoted by benzyladenine, which breaks cormel dormancy, and is inhibited by abscisic acid and gibberellin A3, which inhibit cormel germination. The rate of dark fixation by nondormant cormels is five times higher than that in dormant ones. Dark fixation is not due to microorganisms. It is temperature-dependent and can be measured stoichiometrically in vivo. The apex and base of the cormels accumulate more label than the central part. Dark fixation of both dormant and nondormant cormels is also promoted by imbibition in water. The fate of the labeled assimilates was followed by ion exchange chromatography.  相似文献   

18.
19.
Stumpf DK  Jensen RG 《Plant physiology》1982,69(6):1263-1267
A system has been developed for the study of photosynthetic CO2 fixation by isolated spinach chloroplasts at air levels of CO2. Rates of CO2 fixation were typically 20 to 60 micromoles/milligrams chlorophyll per hour. The rate of fixation was linear for 10 minutes but then declined to less than 10% of the initial value by 40 minutes. Ribulose 1,5-bisphosphate (RuBP) levels remained unchanged during this period, indicating that they were not the cause for the decline. The initial activity of the RuBP carboxylase in the chloroplast was high for 8 to 10 minutes and then declined similar to the rate of CO2 fixation, suggesting that the decline in CO2 fixation may have been caused by deactivation of the enzyme.  相似文献   

20.
Ginzburg C 《Plant physiology》1981,68(5):1105-1109
Dark CO2 fixation in Gladiolus X gandavensis Van Houtte cormels increases during the break of dormancy by low-temperature storage or by cytokinins. The in vitro activities of phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase in preparations from dormant and nondormant cormels were compared with dark fixation rates in vivo. The distribution of 14C-label in the carboxylation products in dormant, nondormant, water-imbibed, and benzyladenine- and abscisic acid-treated cormels was compared by pulse-chase experiments. Dormant cormels have more label in malate and less in citrate and amino acids. Malate utilization in dormant cormels is slower than in nondormant ones. Citrate and glutamine accumulate in dormant cormels in inactive pools. Benzyladenine induces in dormant cormels changes similar to cold storage. Dark fixation is among the first reactions which are activated during the break of dormancy by both benzyl adenine and cold storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号