首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlamydiae are intracellular bacterial pathogens that infect mucosal surfaces, i.e., the epithelium of the lung, genital tract, and conjunctiva of the eye, as well as alveolar macrophages. In the present study, we show that pulmonary surfactant protein A (SP-A) and surfactant protein D (SP-D), lung collectins involved in innate host defense, enhance the phagocytosis of Chlamydia pneumoniae and Chlamydia trachomatis by THP-1 cells, a human monocyte/macrophage cell line. We also show that SP-A is able to aggregate both C. trachomatis and C. pneumoniae but that SP-D only aggregates C. pneumoniae. In addition, we found that after phagocytosis in the presence of SP-A, the number of viable C. trachomatis pathogens in the THP-1 cells 48 h later was increased approximately 3.5-fold. These findings suggest that SP-A and SP-D interact with chlamydial pathogens and enhance their phagocytosis into macrophages. In addition, the chlamydial pathogens internalized in the presence of collectins are able to grow and replicate in the THP-1 cells after phagocytosis.  相似文献   

2.
There is increasing evidence that particulate air pollutants, such as diesel exhaust particles (DEP), potentiate chronic inflammatory processes as well as acute symptomatic responses in the respiratory tract. The mechanisms of action as well as the cellular targets for DEP remain to be elucidated. We show in this paper that the phagocytosis of DEP by primary alveolar macrophages or macrophage cell lines, RAW 264.7 and THP-1, leads to the induction of apoptosis through generation of reactive oxygen radicals (ROR). This oxidative stress initiates two caspase cascades and a series of cellular events, including loss of surface membrane asymmetry and DNA damage. The apoptotic effect on macrophages is cell specific, because DEP did not induce similar effects in nonphagocytic cells. DEP that had their organic constituents extracted were no longer able to induce apoptosis or generate ROR. The organic extracts were, however, able to induce apoptosis. DEP chemicals also induced the activation of stress-activated protein kinases, which play a role in cellular apoptotic pathways. The injurious effects of native particles or DEP extracts on macrophages could be reversed by the antioxidant, N-acetyl-cysteine. Taken together, these data suggest that organic compounds contained in DEP may exert acute toxic effects via the generation of ROR in macrophages.  相似文献   

3.
Sporothrix schenckii is a human pathogen that causes sporotrichosis, a cutaneous subacute or chronic mycosis. Little is known about the innate immune response and the receptors involved in host recognition and phagocytosis of S. schenckii. Here, we demonstrate that optimal phagocytosis of conidia and yeast is dependent on preimmune human serum opsonisation. THP-1 macrophages efficiently ingested opsonised conidia. Competition with d-mannose, methyl α-d-mannopyranoside, d-fucose, and N-acetyl glucosamine blocked this process, suggesting the involvement of the mannose receptor in binding and phagocytosis of opsonised conidia. Release of TNF-α was not stimulated by opsonised or non-opsonised conidia, although reactive oxygen species (ROS) were produced, resulting in the killing of conidia by THP-1 macrophages. Heat inactivation of the serum did not affect conidia internalization, which was markedly decreased for yeast cells, suggesting the role of complement components in yeast uptake. Conversely, release of TNF-α and production of ROS were induced by opsonised and non-opsonised yeast. These data demonstrate that THP-1 macrophages respond to opsonised conidia and yeast through different phagocytic receptors, inducing a differential cellular response. Conidia induces a poor pro-inflammatory response and lower rate of ROS-induced cell death, thereby enhancing the pathogen's survival.  相似文献   

4.
A G protein-coupled receptor responsive to bile acids   总被引:6,自引:0,他引:6  
So far some nuclear receptors for bile acids have been identified. However, no cell surface receptor for bile acids has yet been reported. We found that a novel G protein-coupled receptor, TGR5, is responsive to bile acids as a cell-surface receptor. Bile acids specifically induced receptor internalization, the activation of extracellular signal-regulated kinase mitogen-activated protein kinase, the increase of guanosine 5'-O-3-thio-triphosphate binding in membrane fractions, and intracellular cAMP production in Chinese hamster ovary cells expressing TGR5. Our quantitative analyses for TGR5 mRNA showed that it was abundantly expressed in monocytes/macrophages in human and rabbit. Treatment with bile acids was found to suppress the functions of rabbit alveolar macrophages including phagocytosis and lipopolysaccharide-stimulated cytokine productions. We prepared a monocytic cell line expressing TGR5 by transfecting a TGR5 cDNA into THP-1 cells that did not express TGR5 originally. Treatment with bile acids suppressed the cytokine productions in the THP-1 cells expressing TGR5, whereas it did not influence those in the original THP-1 cells, suggesting that TGR5 is implicated in the suppression of macrophage functions by bile acids.  相似文献   

5.
Prior reports have suggested that CD14 mediates uptake of Mycobacterium tuberculosis into porcine alveolar macrophages and human fetal microglia, but the contribution of CD14 to cell entry in human macrophages has not been studied. To address this question, we used flow cytometry to quantify uptake by human monocytes and alveolar macrophages of M. tuberculosis expressing green fluorescent protein. Neutralizing anti-CD14 antibodies did not affect bacillary uptake and the efficiency of bacillary entry was similar in THP-1 cells expressing low and high levels of CD14. However, most internalized bacteria were found in CD14+ but not in CD14- monocytes because M. tuberculosis infection upregulated CD14 expression. We conclude that: (1) CD14 does not mediate cellular entry by M. tuberculosis; (2) M. tuberculosis infection upregulates CD14 expression on mononuclear phagocytes, and this may facilitate the pathogen's capacity to modulate the immune response.  相似文献   

6.
We describe a development of a novel high-throughput phagocytosis assay based on a pH-sensitive cyanine dye, CypHer5E, which is maximally fluorescent in an acidic environment. This dye is ideally suited for the study of phagocytosis because of the acidic conditions generated in the intracellular phagocytic vesicles after particle uptake. Use of CypHer5E-labeled particles results in greatly reduced background from noninternalized particles and makes the assay more robust. Additionally, CypHer5E-labeled particles are resistant to fluorescence quenching observed in the aggressive and acidic environment of the phagosome with traditional dyes. The CypHer5E-based assay has been shown to work reliably in a variety of cell types, including primary human monocytes, primary human dendritic cells, primary human endothelial cells, human monocytic THP-1 cell line, and human/mouse hybrid macrophage cell line WBC264-9C. Inhibition of CypHer5E bead uptake by cytochalasin D was studied, and the 50% inhibition concentration (IC50) was determined. The assay was performed in 96- and 384-well formats, and it is appropriate for high-throughput cellular screening of processes and compounds affecting phagocytosis. The CypHer5E phagocytosis assay is superior to existing protocols because it allows easy distinction of true phagocytosis from particle adherence and can be used in microscopy-based measurement of phagocytosis.  相似文献   

7.
Phospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes. Surprisingly, this 3-fold increase in PLSCR1 expression correlated with an apparent modification in the membrane topology of the protein at the cell surface of differentiated macrophages. While depletion of PLSCR1 in the monocytic THP-1 cell-line with specific shRNA did not inhibit the constitutive cell surface exposure of phosphatidylserine observed in differentiated macrophages, a net increase in the FcR-mediated phagocytic activity was measured in PLSCR1-depleted THP-1 cells and in bone marrow-derived macrophages from PLSCR1 knock-out mice. Reciprocally, phagocytosis was down-regulated in cells overexpressing PLSCR1. Since endogenous PLSCR1 was recruited both in phagocytic cups and in phagosomes, our results reveal a specific role for induced PLSCR1 expression in the modulation of the phagocytic process in differentiated macrophages.  相似文献   

8.
One of the key features associated with programmed cell death in many tissues is the phagocytosis of apoptotic bodies by macrophages. Removal of apoptotic cells occurs before their lysis, indicating that these cells, during the development of apoptosis, express specific surface changes recognized by macrophages. We have compared the mechanisms by which four different macrophage populations recognize apoptotic cells. Murine macrophages elicited into the peritoneal cavity with either of two different phlogistic agents were able to phagocytose apoptotic cells. This phagocytosis was inhibited by phosphatidylserine (PS), regardless of the species (human or murine) or type (lymphocyte or neutrophil) of the apoptotic cell. In contrast, the murine bone marrow macrophage, like the human monocyte-derived macrophage, utilized the vitronectin receptor, an alpha v beta 3 integrin, for the removal of apoptotic cells, regardless of their species or type. That human macrophages are capable, under some circumstances, of recognizing PS on apoptotic cells was suggested by the observation that PS liposomes inhibited phagocytosis by phorbol ester-treated THP-1 cells. These results suggest that the mechanism by which apoptotic cells are recognized and phagocytosed by macrophages is determined by the subpopulation of macrophages studied.  相似文献   

9.
Inulin is a polysaccharide that enhances various immune responses, mainly to T and B cells, natural killer cells, and macrophages in vivo and in vitro. Previous reports describe that inulin activates macrophages indirectly by affecting the alternative complement pathway. In this study, we examined the direct effect of inulin on PMA-treated THP-1 macrophages. Inulin treatment did not stimulate the proliferation of THP-1 macrophages at all. However, inulin treatment significantly increased phagocytosis of the polystyrene beads without the influence of serum. Doses of around 1 mg/mL had the maximal effect, and significant progression of phagocytosis occurred at times treated over 6 h. Inulin augmented phagocytosis not only with polystyrene beads but also with apoptotic cancer cells. The inulin-induced phagocytosis uptake was suppressed in Toll-like receptor (TLR) 4 mutated C3H/HeJ mice peritoneal macrophages. Moreover, inulin-induced THP-1 macrophage TNF-α secretion was inhibited using a blocking antibody specific to TLR4, suggesting that TLR4 is involved in the binding of inulin to macrophages. Furthermore, we used specific kinase inhibitors to assess the involvement of inulin-induced phagocytosis and revealed that phosphoinositide 3-kinase and mitogen-activated protein kinase, especially p38, participated in phagocytosis. These results suggest that inulin affects macrophages directly by involving the TLR4 signaling pathway and stimulating phagocytosis for enhancing immunomodulation.  相似文献   

10.
Pseudomonas. aeruginosa (PA) is a leading cause of nosocomial pneumonia in patients receiving mechanical ventilation with hyperoxia. Exposure to supraphysiological concentrations of reactive oxygen species during hyperoxia may result in macrophage damage that reduces their ability to phagocytose PA. We tested this hypothesis in cultured macrophage-like RAW 264.7 cells and alveolar macrophages from mice exposed to hyperoxia. Exposure to hyperoxia induced a similarly impaired phagocytosis of both the mucoid and the nonmucoid forms of PA in alveolar macrophages and RAW cells. Compromised PA phagocytosis was associated with cytoskeleton disorganization and actin oxidation in hyperoxic macrophages. To test whether moderate concentrations of O(2) limit the loss of phagocytic function induced by > or =95% O(2), mice and RAW cells were exposed to 65% O(2). Interestingly, although the resulting lung injury/cell proliferation was not significant, exposure to 65% O(2) resulted in a marked reduction in PA phagocytosis that was comparable to that of > or =95% O(2). Treatment with antioxidants, even post hyperoxic exposure, preserved actin cytoskeleton organization and phagocytosis of PA. These data suggest that hyperoxia reduces macrophage phagocytosis through effects on actin functions which can be preserved by antioxidant treatment. In addition, administration of moderate rather than higher concentrations of O2 does not improve macrophage phagocytosis of PA.  相似文献   

11.
Phagocytosis is an important immune function to quantify. This immune response may be modulated by exposure to biological response modifiers or by exposure to pollutants. A new technique for quantifying nonspecific phagocytosis of alveolar and peritoneal macrophages in the same animal has been developed that utilizes fluorescent polystyrene beads. When incorporated into inhalation studies, this technique can be used to determine whether the toxic effect of an inhaled pollutant is local (effect on alveolar macrophages), systemic (effect on peritoneal macrophages), or both local and systemic. This method results in a determination of both the level of phagocytosis (the percentage of phagocytic macrophages) and the macrophage specific activity (the number of beads phagocytized per macrophage). This method also allows a determination of adherence by quantifying the number of particles in contact with, but not phagocytized by, the macrophage. Macrophage preparations were incubated with fluorescent beads for 2 hr and cyto-centrifuged onto a glass slide. Fluorescent beads present on the slide or cell-associated but not ingested by phagocytosis were removed by immersing the slide containing the macrophage preparation in methylene chloride for 15-30 sec. Fluorescent beads ingested by phagocytosis were then easily quantified with a fluorescence microscope. This technique was used to assess the baseline levels of phagocytosis for rat alveolar and peritoneal macrophages from the same animal and the kinetics and level of enhanced phagocytosis for alveolar and peritoneal macrophages after injection with the interferon inducer polyinosinate-polycytidylate (poly(I):poly(C)). The kinetics of enhanced alveolar and peritoneal macrophage phagocytosis by poly(I):poly(C) were similar; however, stimulated phagocytic levels of peritoneal macrophages never reached the phagocytic activity observed for the resident, highly phagocytic alveolar macrophages. This elevated phagocytic activity is most likely due to interferon stimulated by particulate matter in the large volume of air processed by the lungs and is important for host defense against a number of different inhaled microorganisms.  相似文献   

12.
The influence of the oxidative state of chylomicron remnants (CMR) on the mechanisms of their uptake and induction of lipid accumulation by macrophages derived from the human monocyte cell line, THP-1, during foam cell formation was investigated using chylomicron-remnant-like particles (CRLPs) at 3 different levels of oxidation. The oxidative state of CRLPs was varied by exposure to CuSO(4) (oxCRLPs) or incorporation of the antioxidant, probucol (pCRLPs) into the particles. oxCRLPs caused significantly less accumulation of triacylglycerol in the macrophages than CRLPs, and their rate of uptake was lower, while pCRLPs caused more lipid accumulation and were taken up faster. Uptake of all 3 types of particles was inhibited to a similar extent when entry via the low density lipoprotein (LDL) receptor related protein (80-90%), LDL receptor (-30-40%), CD36 (-40%) and phagocytosis (-35-40%) was blocked using lactoferrin, excess LDL, anti-CD36 and cytochalasin D, respectively, but blocking scavenger receptors-A or -B1 using poly inosinic acid or excess HDL had no effect. These findings show that oxidation of CRLPs lowers their rate of uptake and induction of lipid accumulation in macrophages. However, oxidation does not change the main pathways of internalisation of CRLPs into THP-1 macrophages, which occur mainly via the LRP with some contribution from the LDLr, while CD36 and phagocytosis have only a minor role, regardless of the oxidative state of the particles. Thus, the effects of CMR oxidation on foam cell formation contrast sharply with those of LDL oxidation and this may be important in the role of dietary oxidized lipids and antioxidants in modulating atherosclerosis.  相似文献   

13.
Phospholipases D1 and D2 coordinately regulate macrophage phagocytosis   总被引:5,自引:0,他引:5  
Phagocytosis is a fundamental feature of the innate immune system, required for antimicrobial defense, resolution of inflammation, and tissue remodeling. Furthermore, phagocytosis is coupled to a diverse range of cytotoxic effector mechanisms, including the respiratory burst, secretion of inflammatory mediators and Ag presentation. Phospholipase D (PLD) has been linked to the regulation of phagocytosis and subsequent effector responses, but the identity of the PLD isoform(s) involved and the molecular mechanisms of activation are unknown. We used primary human macrophages and human THP-1 promonocytes to characterize the role of PLD in phagocytosis. Macrophages, THP-1 cells, and other human myelomonocytic cells expressed both PLD1 and PLD2 proteins. Phagocytosis of complement-opsonized zymosan was associated with stimulation of the activity of both PLD1 and PLD2, as demonstrated by a novel immunoprecipitation-in vitro PLD assay. Transfection of dominant-negative PLD1 or PLD2 each inhibited the extent of phagocytosis (by 55-65%), and their combined effects were additive (reduction of 91%). PLD1 and PLD2 exhibited distinct localizations in resting macrophages and those undergoing phagocytosis, and only PLD1 localized to the phagosome membrane. The COS-7 monkey fibroblast cell line, which has been used as a heterologous system for the analysis of receptor-mediated phagocytosis, expressed PLD2 but not PLD1. These data support a model in which macrophage phagocytosis is coordinately regulated by both PLD1 and PLD2, with isoform-specific localization. Human myelomonocytic cell lines accurately model PLD-dependent signal transduction events required for phagocytosis, but the heterologous COS cell system does not.  相似文献   

14.
目的:探讨氧化低密度脂蛋白(oxidized low density lipoprotein,ox-LDL)对巨噬细胞源性泡沫细胞吞噬功能和炎症相关因子分泌功能的影响。方法:利用佛波酯(phorbol ester,PMA)诱导THP-1细胞分化形成巨噬细胞,之后采用ox-LDL处理48小时后,诱导其形成泡沫细胞。利用中性红吞噬实验,分析泡沫细胞形成前后吞噬功能的变化;通过ELISA法,检测细胞培养上清中肿瘤坏死因子α(tumor necrosis factorα,TNF-α)含量,观察ox-LDL对THP-1巨噬细胞功能的影响。结果:细胞形态学结果表明,我们成功利用ox-LDL诱导THP-1巨噬细胞形成泡沫细胞;进一步发现ox-LDL诱导THP-1巨噬细胞表面的清道夫受体CD36表达升高,并促进细胞吞噬功能增加,进一步促进细胞内胆固醇含量显著升高(P0.05);同时,ox-LDL能够刺激巨噬细胞大量分泌TNF-α(P0.05)。结论:ox-LDL通过增强清道夫受体CD36表达,提高巨噬细胞的吞噬功能,引起大量胆固醇聚集,产生细胞毒性损伤,并促进TNF-α炎性因子的大量分泌。  相似文献   

15.
We have previously demonstrated that chronic alcohol exposure decreases glutathione in the alveolar space. Although alcohol use is associated with decreased alveolar macrophage function, the mechanism by which alcohol impairs macrophage phagocytosis is unknown. In the current study, we examined the possibility that ethanol-induced alveolar macrophage dysfunction was secondary to decreased glutathione and subsequent chronic oxidative stress in the alveolar space. After 6 wk of ethanol ingestion, oxidant stress in the alveolar macrophages was evidenced by a 30-mV oxidation of the GSH/GSSG redox potential (P 相似文献   

16.
Inhalation of nanoparticles has been implicated in respiratory morbidity and mortality. In particular, carbon black nanoparticles are found in many different environmental exposures. Macrophages take up inhaled nanoparticles and respond via release of inflammatory mediators and in some cases cell death. Based on new data, we propose that exposure of macrophages (both a macrophage cell line and primary human alveolar macrophages) to carbon black nanoparticles induces pyroptosis, an inflammasome-dependent form of cell death. Exposure of macrophages to carbon black nanoparticles resulted in inflammasome activation as defined by cleavage of caspase 1 to its active form and downstream IL-1β release. The cell death that occurred with carbon black nanoparticle exposure was identified as pyroptosis by the protective effect of a caspase 1 inhibitor and a pyroptosis inhibitor. These data demonstrate that carbon black nanoparticle exposure activates caspase 1, increases IL-1β release after LPS priming, and induces the proinflammatory cell death, pyroptosis. The identification of pyroptosis as a cellular response to carbon nanoparticle exposure is novel and relates to environmental and health impacts of carbon-based particulates.  相似文献   

17.
The factors that contribute to the exceptionally high incidence of Mycobacterium tuberculosis (MTb) disease in HIV(+) persons are poorly understood. Macrophage apoptosis represents a critical innate host cell response to control MTb infection and limit disease. In the current study, virulent live or irradiated MTb (iMTbRv) induced apoptosis of differentiated human U937 macrophages in vitro, in part dependent on TNF-alpha. In contrast, apoptosis of differentiated HIV(+) human U1 macrophages (HIV(+) U937 subclone) was markedly reduced in response to iMTbRv and associated with significantly reduced TNF-alpha release, whereas apoptosis and TNF-alpha release were intact to TLR-independent stimuli. Furthermore, reduced macrophage apoptosis and TNF-alpha release were independent of MTb phagocytosis. Whereas surface expression of macrophage TLR2 and TLR4 was preserved, IL-1 receptor associated kinase-1 phosphorylation and NF-kappaB nuclear translocation were reduced in HIV(+) U1 macrophages in response to iMTbRv. These findings were confirmed using clinically relevant human alveolar macrophages (AM) from healthy persons and asymptomatic HIV(+) persons at clinical risk for MTb infection. Furthermore, in vitro HIV infection of AM from healthy persons reduced both TNF-alpha release and AM apoptosis in response to iMTbRv. These data identify an intrinsic specific defect in a critical macrophage cellular response to MTb that may contribute to disease pathogenesis in HIV(+) persons.  相似文献   

18.
Summary Responses of a recently developed rat alveolar macrophage cell (NR8383.1) line were compared to those of freshly derived alveolar macrophages in vitro. Marked inter- and intraspecies heterogeneity in levels of phagocytosis of unopsonizedPseudomonas aeruginosa or zymosan was noted among freshly derived alveolar macrophages from rats, rabbits, and baboons. In contrast, phagocytic responses of alveolar macrophage cell line were predictable and highly reproducible. Similar results were obtained in measuring oxidative burst, as indicated by the production of H2O2 and luminol-enhanced chemiluminescence. Responses were again highly variable in freshly derived alveolar macrophages stimulated with zymosan or phorbol myristic acetate; moreover, freshly derived alveolar macrophages exhibited a wide range of chemiluminescence activity in unstimulated cultures. Results strongly suggest that data derived from the continuous alveolar macrophage culture NR8383.1 can be extrapolated to freshly derived alveolar macrophages of various species, and in many experiments will be useful in avoiding the significant animal-to-animal variance observed among freshly derived cell preparations. This work was supported in part by grant A119811 and SCOR HL23578, from the National Institutes of Health, Bethesda, MD. Portions of these studies appeared as a poster presentation at the American Society for Microbiology, Atlanta, GA, 1987.  相似文献   

19.
Lipid accumulation alters macrophage biology and contributes to lipid retention within the vessel wall. In this study, we investigated the role of adipophilin on triglyceride accumulation and lipid-droplet formation in THP-1-derived macrophages (THP-1 macrophages). In the presence of acetylated low-density lipoprotein, macrophages infected with an adenovirus expressing human adipophilin showed a 31% increase in triglyceride content and a greater number of lipid droplets compared with control cells. Incubation of macrophages with very low-density lipoprotein (VLDL) dramatically increased cellular triglyceride content similarly in control and adipophilin-overexpressing cells. By itself, VLDL increased adipophilin expression, which explains the lack of effect of adipophilin overexpression on cellular triglyceride content in macrophages loaded with VLDL. The lipid-droplet content of macrophages was increased by overexpression of adipophilin and/or loading with VLDL. In contrast, inhibition of adipophilin expression using siRNA prevented lipid-droplet formation and significantly reduced intracellular triglyceride content. Using inhibitors of beta-oxidation and acyl-coenzyme A synthetase, results were obtained which suggest that adipophilin elevates cellular lipids by inhibition of beta-oxidation and stimulation of long-chain fatty acid incorporation into triglycerides. Adipophilin expression in THP-1 macrophages altered the cellular content of different lipids and enhanced the size of lipid droplets, consistent with a role for adipophilin in human foam cell formation.  相似文献   

20.
Much of the cholesterol that accumulates in atherosclerotic plaques is found within monocyte-macrophages transforming these cells into "foam cells." Native low density lipoprotein (LDL) does not cause foam cell formation. Treatment of LDL with cholesterol esterase converts LDL into cholesterol-rich liposomes having >90% cholesterol in unesterified form. Similar cholesterol-rich liposomes are found in early developing atherosclerotic plaques surrounding foam cells. We now show that cholesterol-rich liposomes produced from cholesterol esterase-treated LDL can cause human monocyte-macrophage foam cell formation inducing a 3-5-fold increase in macrophage cholesterol content of which >60% is esterified. Although cytochalasin D inhibited LDL liposome-induced macrophage cholesteryl ester accumulation, LDL liposomes did not enter macrophages by phagocytosis. Rather, the LDL liposomes induced and entered surface-connected compartments within the macrophages, a unique endocytic pathway in these cells that we call patocytosis. LDL liposome apoB rather than LDL liposome lipid mediated LDL liposome uptake by macrophages. This was shown by the findings that: 1) protease treatment of the LDL liposomes prevented macrophage cholesterol accumulation; 2) liposomes prepared from LDL lipid extracts did not cause macrophage cholesterol accumulation; and 3) purified apoB induced and accumulated within macrophage surface-connected compartments. Although apoB mediated the macrophage uptake of LDL liposomes, this uptake did not occur through LDL, LDL receptor-related protein, or scavenger receptors. Also, LDL liposome uptake was not sensitive to treatment of macrophages with trypsin or heparinase. Cholesterol esterase-mediated transformation of LDL into cholesterol-rich liposomes is an LDL modification that: 1) stimulates uptake of LDL cholesterol by apoB-dependent endocytosis into surface-connected compartments, and 2) causes human monocyte-macrophage foam cell formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号