首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Coenzyme Q10 (CoQ10) or Ubiquinone10 (UQ10), an isoprenylated benzoquinone, is well-known for its role as an electron carrier in aerobic respiration. It is a sole representative of lipid soluble antioxidant that is synthesized in our body. In recent years, it has been found to be associated with a range of patho-physiological conditions and its oral administration has also reported to be of therapeutic value in a wide spectrum of chronic diseases. Additionally, as an antioxidant, it has been widely used as an ingredient in dietary supplements, neutraceuticals, and functional foods as well as in anti-aging creams. Since its limited dietary uptake and decrease in its endogenous synthesis in the body with age and under various diseases states warrants its adequate supply from an external source. To meet its growing demand for pharmaceutical, cosmetic and food industries, there is a great interest in the commercial production of CoQ10. Various synthetic and fermentation of microbial natural producers and their mutated strains have been developed for its commercial production. Although, microbial production is the major industrial source of CoQ10 but due to low yield and high production cost, other cost-effective and alternative sources need to be explored. Plants, being photosynthetic, producing high biomass and the engineering of pathways for producing CoQ10 directly in food crops will eliminate the additional step for purification and thus could be used as an ideal and cost-effective alternative to chemical synthesis and microbial production of CoQ10. A better understanding of CoQ10 biosynthetic enzymes and their regulation in model systems like E. coli and yeast has led to the use of metabolic engineering to enhance CoQ10 production not only in microbes but also in plants. The plant-based CoQ10 production has emerged as a cost-effective and environment-friendly approach capable of supplying CoQ10 in ample amounts. The current strategies, progress and constraints of CoQ10 production in plants are discussed in this review.  相似文献   

2.

Key message

The current status of development of transgenic plants for improved aphid resistance, and the pros and cons of different strategies are reviewed and future perspectives are proposed.

Abstract

Aphids are major agricultural pests that cause significant yield losses of crop plants each year. Excessive dependence on insecticides for aphid control is undesirable because of the development of insecticide resistance, the potential negative effects on non-target organisms and environmental pollution. Transgenic plants engineered for resistance to aphids via a non-toxic mode of action could be an efficient alternative strategy. In this review, the distribution of major aphid species and their damages on crop plants, the so far isolated aphid-resistance genes and their applications in developments of transgenic plants for improved aphid resistance, and the pros and cons of these strategies are reviewed and future perspectives are proposed. Although the transgenic plants developed through expressing aphid-resistant genes, manipulating plant secondary metabolism and plant-mediated RNAi strategy have been demonstrated to confer improved aphid resistance to some degree. So far, no aphid-resistant transgenic crop plants have ever been commercialized. This commentary is intended to be a helpful insight into the generation and future commercialization of aphid-resistant transgenic crops in a global context.  相似文献   

3.
4.
5.
6.
The U.S. government does not yet have the range of medical countermeasures needed to protect its citizens from anthrax and other potential bioweapons. In the event of an anthrax attack, treatment interventions in addition to antibiotics would be needed so that very ill patients can be treated and clean-up crews can be better protected, especially if an engineered strain is used. This article describes specific anthrax countermeasures that are in development, barriers to development, and potential mechanisms the government could use to accelerate the movement of these countermeasures through the pipeline. A key challenge will be to encourage the transition of promising leads from basic research to the product development stage, when they may qualify for BioShield funds.  相似文献   

7.
Visual electrophysiology allows non-invasive monitoring of the function of most processing stages along the visual pathway. Here, we consider which of the available methods provides the most information concerning glaucomatous optic nerve disease. The multifocal electroretinogram (ERG), although often employed, is less affected in glaucoma than two direct measurements of retinal ganglion cell function, namely the pattern ERG (PERG) and the photopic negative response (PhNR) of the ERG. For the PERG, longitudinal studies have been reported, suggesting that this method can be used for the early detection of glaucoma; for the PhNR, no longitudinal study is available as yet. The multifocal PERG can spatially resolve ganglion cell function but its glaucomatous reduction is typically panretinal, even with only local field changes and so, its topographic resolution is of no advantage in glaucoma. The multifocal visual evoked potential promises objective perimetry and shows sensitivity and specificity comparable with standard automated perimetry but has not been established as a routine tool to date.  相似文献   

8.
Functional markers in wheat: current status and future prospects   总被引:10,自引:0,他引:10  
Functional markers (FM) are developed from sequence polymorphisms present in allelic variants of a functional gene at a locus. FMs accurately discriminate alleles of a targeted gene, and are ideal molecular markers for marker-assisted selection in wheat breeding. In this paper, we summarize FMs developed and used in common wheat. To date, more than 30 wheat loci associated with processing quality, agronomic traits, and disease resistance, have been cloned, and 97 FMs were developed to identify 93 alleles based on the sequences of those genes. A general approach is described for isolation of wheat genes and development of FMs based on in silico cloning and comparative genomics. The divergence of DNA sequences of different alleles that affect gene function is summarized. In addition, 14 molecular markers specific for alien genes introduced from common wheat relatives were also described. This paper provides updated information on all FMs and gene-specific STS markers developed so far in wheat and should facilitate their application in wheat breeding programs.  相似文献   

9.
The current revolution in biological microscopy stems from the realisation that advances in optics and computational tools and automation make the modern microscope an instrument that can access all scales relevant to modern biology - from individual molecules all the way to whole tissues and organisms and from single snapshots to time-lapse recordings sampling from milliseconds to days. As these and more new technologies appear, the challenges of delivering them to the community grows as well. I discuss some of these challenges, and the examples where openly shared technology have made an impact on the field.  相似文献   

10.
11.
Journal of Applied Phycology - Global demand for seaweed and its products has increased exponentially over the last 25 years. Equally, the continent of Africa and its offshore islands have...  相似文献   

12.
13.
14.
Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.  相似文献   

15.
16.
The nitrile-degrading enzymes: current status and future prospects   总被引:23,自引:0,他引:23  
Nitrile-converting enzymes are becoming commonplace in the synthesis of pharmaceuticals and commodity chemicals. These versatile biocatalysts have potential applications in different fields including synthetic biocatalysis and bioremediation. This review attempts to describe in detail the three major classes of nitrile-converting enzymes, namely nitrilases, nitrile hydratases and amidases. Various aspects of these enzymes including their occurrence, mechanism of action, characteristics and applicability in different sectors have been elaborately elucidated. Cloning of genes related to nitrile-converting enzymes is also discussed.  相似文献   

17.
18.
The prokaryotes are by far the most abundant organisms inhabiting planet Earth. They are also by far the most diverse, both metabolically and phylogenetically; they encompass the Bacteria and the Archaea, two out of the three major divisions of living organisms. The current prokaryote species classification is based on a combination of genomic and phenotypic properties. The recommended cut-off value of 70% DNA-DNA similarity to delineate species signifies an extremely broad species definition for the prokaryotes compared with the higher eukaryotes. The number of validly named species of prokaryotes is currently slightly more than 6200. However, on the basis of small-subunit rDNA characterization of whole communities and other approaches, the more exact number of species present can be inferred to be at least two orders of magnitude larger. Classic culturing methods based on colony formation on agar are generally unsatisfactory for the recovery of bacteria from the environment. Many of the most abundant prokaryotes in nature have not yet been brought into culture. Some of these may thrive by means of as yet unknown modes of energy generation. Several novel methods have recently enabled the isolation of some interesting organisms of environmental significance. A better coverage of the prokaryote diversity on Earth depends on such innovative approaches, combined with appropriate funding.  相似文献   

19.
The desire to reduce dependence on the ever diminishing fossil fuel reserves coupled with the impetus towards green energy has seen increased research in biofuels as alternative sources of energy. Lignocellulose materials are one of the most promising feedstocks for advanced biofuels production. However, their utilisation is dependent on the efficient hydrolysis of polysaccharides, which in part is dependent on cost-effective and benign pretreatment of biomass to remove or modify lignin and release or expose sugars to hydrolytic enzymes. Laccase is one of the enzymes that are being investigated not only for potential use as pretreatment agents in biofuel production, mainly as a delignifying enzyme, but also as a biotechnological tool for removal of inhibitors (mainly phenolic) of subsequent enzymatic processes. The current review discusses the major advances in the application of laccase as a potential pretreatment strategy, the underlying principles as well as directions for future research in the search for better enzyme-based technologies for biofuel production. Future perspectives could include synergy between enzymes that may be required for optimal results and the adoption of the biorefinery concept in line with the move towards the global implementation of the bioeconomy strategy.  相似文献   

20.
R. J. Benzie 《CMAJ》1979,120(6):685-692
The current status of antenatal genetic diagnosis is reviewed and the limitations of present techniques are discussed. It is suggested that multidisciplinary clinics are the most efficient means of providing this aspect of health care. Advances in cell culture techniques, in ultrasonography and in fetoscopy will extend the services available, and the impact of this will be felt by the community. Education of the medical profession and the public in this area is necessary so that informed decision-making can take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号