首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The peptide hormone gastrin has been identified as a major regulator of acid secretion and a potent mitogen for normal and malignant gastrointestinal cells. The importance of gastric acid in the absorption of dietary iron first became evident 50 years ago when iron deficiency anemia was recognized as a long-term consequence of partial gastrectomy. This review summarizes the connections between circulating gastrins, iron status and colorectal cancer. Gastrins bind two ferric ions with micromolar affinity and, in the case of non-amidated forms of the hormone, iron binding is essential for biological activity in vitro and in vivo. The demonstration of an interaction between gastrin and transferrin by biochemical techniques led to the proposal that gastrins catalyze the loading of transferrin with iron. Several lines of evidence, including the facts that the concentrations of circulating gastrins are increased in mice and humans with the iron overload disease hemochromatosis and that transferrin saturation positively correlates with circulating gastrin concentration, suggest the potential involvement of gastrins in iron homeostasis. Conversely, recognition that ferric ions play an unexpected role in the biological activity of gastrins may assist in the development of useful therapies for colorectal carcinoma and other disorders of mucosal proliferation in the gastrointestinal tract.  相似文献   

2.
Gastric acid production is important in intestinal iron absorption. The peptide hormone gastrin exists in both amidated and non-amidated forms, which stimulate and potentiate gastric acid secretion, respectively. Since non-amidated gastrins require ferric ions for biological activity in vitro, this study investigated the connection between iron status and gastrin by measurement of circulating gastrin concentrations in mice and humans with hemochromatosis. Gastrin concentrations are increased in the plasma and gastric mucosa of Hfe(-/-) mice, and in the sera of humans with HFE-related hemochromatosis. The discovery of a relationship between iron status and circulating gastrin concentrations opens a new perspective on the mechanisms of iron homeostasis.  相似文献   

3.
Amidated and nonamidated gastrins elicit different biological effects via distinct receptors in different tissues. Amidated gastrin 17 stimulates gastric acid secretion and the development of gastric carcinoids, whereas glycine-extended gastrin 17 stimulates proliferation of the colonic mucosa and the development of colorectal cancers. Because glycine-extended gastrin 17 binds two ferric ions with high affinity (Baldwin, G. S., Curtain, C. C., and Sawyer, W. H. (2001) Biochemistry 40, 10741-10746), we have investigated the identity of the iron ligands and the role of ferric ions in biological activity. Here we report the solution structure of glycine-extended gastrin 17, determined by NMR spectroscopy. The spectral changes observed upon the addition of ferric ions revealed that Glu(7) acted as a ligand at the first ferric binding site, and that Glu(8) and Glu(9) acted as ligands at the second ferric ion binding site. Fluorescence quenching experiments confirmed that a GglyE7A mutant bound only one ferric ion. The inability of this mutant to stimulate proliferation or migration in the IMGE-5 cell line and the observation that the iron chelator desferrioxamine selectively blocked the effects of glycine-extended gastrin 17 indicated that binding of a ferric ion to Glu(7) was essential for biological activity. This is the first report of an essential role for a metal ion in the action of a hormone.  相似文献   

4.
Kovac S  Xiao L  Shulkes A  Patel O  Baldwin GS 《FEBS letters》2010,584(21):4413-4418
The involvement of the gastrointestinal hormone gastrin in the development of gastrointestinal cancer is highly controversial. Here we demonstrate a positive-feedback loop whereby gastrin, acting via the CCK2 receptor, increases its own expression. Such an autocrine loop has not previously been reported for any other gastrointestinal hormone. Gastrin promoter activation was dependent on the MAP kinase pathway and did not involve Sp1 binding sites or epidermal growth factor receptor transactivation. As the treatment of gastrointestinal cancer cells with amidated gastrin led to increased expression of non-amidated gastrins, the positive-feedback loop may contribute to the sustained increase in circulating gastrins observed in colorectal cancer patients.  相似文献   

5.
The gastrointestinal hormone gastrin is generated from an 80 amino acid precursor (progastrin) by cleavage after dibasic residues by prohormone convertase 1. Phosphorylation of Ser75 has previously been suggested, on the basis of indirect evidence, to inhibit cleavage of progastrin after Arg73Arg74. Gastrins bind two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated gastrins in vitro and in vivo. This study directly investigated the effect of iron binding and of serine phosphorylation on the cleavage of synthetic progastrin-derived peptides. The affinity of synthetic progastrin55–80 for ferric ions, and the rate of cleavage by prohormone convertase 1, were not affected by phosphorylation of Ser75. In contrast, in the presence of ferric ions the rate of cleavage of both progastrin55–80 and phosphoSer75progastrin55–80 by prohormone convertase 1 was significantly reduced. Hence iron binding to progastrin may regulate processing and secretion in vivo, and regulation may be particularly important in diseases with altered iron homeostasis.  相似文献   

6.
Although bismuth salts have been used for over two centuries for the treatment of various gastrointestinal disorders, the mechanism of their therapeutic action remains controversial. Because gastrins bind two trivalent ferric ions with high affinity, and because ferric ions are essential for the biological activity of glycine-extended gastrin 17, we have investigated the hypothesis that trivalent bismuth ions influence the biological activity of gastrins. Binding of bismuth ions to gastrins was measured by fluorescence quenching and NMR spectroscopy. The effects of bismuth ions on gastrin-stimulated biological activities were measured in inositol phosphate, cell proliferation, and cell migration assays. Fluorescence quenching experiments indicated that both glycine-extended and amidated gastrin 17 bound two bismuth ions. The NMR spectral changes observed on addition of bismuth ions revealed that Glu-7 acted as a ligand at the first bismuth ion binding site. In the presence of bismuth ions the ability of glycine-extended gastrin 17 to stimulate inositol phosphate production, cell proliferation, and cell migration was markedly reduced. In contrast, bismuth ions had little effect on the affinity of the CCK-2 receptor for amidated gastrin 17, or on the stimulation of inositol phosphate production by amidated gastrin 17. We conclude that bismuth ions may act, at least in part, by blocking the effects of glycine-extended gastrin 17 on cell proliferation and cell migration in the gastrointestinal tract. This is the first report of a specific inhibitory effect of bismuth ions on the action of a gastrointestinal hormone.  相似文献   

7.
The peptide hormone gastrin binds two ferric ions with high affinity, and iron binding is essential for the biological activity of non-amidated forms of the hormone. Since gastrins act as growth factors in gastrointestinal cancers, and as peptides labelled with Ga and In isotopes are increasingly used for cancer diagnosis, the ability of gastrins to bind other metal ions was investigated systematically by absorption spectroscopy. The coordination structures of the complexes were characterized by extended X-ray absorption fine structure (EXAFS) spectroscopy. Changes in the absorption of gastrin in the presence of increasing concentrations of Ga3+ were fitted by a 2 site model with dissociation constants (Kd) of 3.3 x 10−7 and 1.1 x 10−6 M. Although the absorption of gastrin did not change upon the addition of In3+ ions, the changes in absorbance on Fe3+ ion binding in the presence of indium ions were fitted by a 2 site model with Kd values for In3+ of 6.5 x 10−15 and 1.7 x 10−7 M. Similar results were obtained with Ru3+ ions, although the Kd values for Ru3+ of 2.6 x 10−13 and 1.2 x 10−5 M were slightly larger than observed for In3+. The structures determined by EXAFS all had metal:gastrin stoichiometries of 2:1 but, while the metal ions in the Fe, Ga and In complexes were bridged by a carboxylate and an oxygen with a metal-metal separation of 3.0–3.3 Å, the Ru complex clearly demonstrated a short range Ru—Ru separation, which was significantly shorter, at 2.4 Å, indicative of a metal-metal bond. We conclude that gastrin selectively binds two In3+ or Ru3+ ions, and that the affinity of the first site for In3+ or Ru3+ ions is higher than for ferric ions. Some of the metal ion-gastrin complexes may be useful for cancer diagnosis and therapy.  相似文献   

8.
The observations that the peptide hormone gastrin interacts with transferrin in vitro and that circulating gastrin concentrations are increased in the iron-loading disorder hemochromatosis suggest a possible link between gastrin and iron homeostasis. This study tested the hypothesis that gastrin and iron status are interrelated by measurement of iron homeostasis in mice and humans with abnormal circulating gastrin concentrations. Intestinal iron absorption was determined by (59)Fe uptake following oral gavage, and concentrations of duodenal divalent metal transporter-1 (DMT-1) and hepatic hepcidin mRNAs were determined by quantitative real-time PCR in agastrinemic (GasKO), hypergastrinemic cholecystokinin 2 receptor-deficient (CCK2RKO), or wild-type mice. Iron status was measured by standard methods in the same mice and in hypergastrinemic humans with multiple endocrine neoplasia type 1 (MEN-1). Iron absorption was increased sixfold and DMT-1 mRNA concentration fourfold, and transferrin saturation was reduced 0.8-fold and hepcidin mRNA expression 0.5-fold in juvenile GasKO mice compared with age-matched wild-type mice. In mature mice, few differences were observed between the strains. Juvenile CCK2RKO mice were hypergastrinemic and had a 5.4-fold higher DMT-1 mRNA concentration than wild-type mice without any increase in iron absorption. In contrast to juvenile GasKO mice, juvenile CCK2RKO mice had a 1.5-fold greater transferrin saturation, which was reflected in a twofold increase in liver iron deposition at maturity compared with wild-type mice. The correlation between transferrin saturation and circulating gastrin concentration observed in mutant mice was also observed in human patients with MEN, in whom hypergastrinemia correlated positively (P = 0.004) with an increased transferrin saturation. Our data indicate that, in juvenile animals when iron demand is high, circulating gastrin concentrations may alter iron status by a CCK2R-independent mechanism.  相似文献   

9.
Aim: Gastrins act as growth factors for the normal and neoplastic colorectal mucosa. The aim of this study was to determine the role of gastrins in the response of human colorectal cancer (CRC) cells to hypoxia in vitro and in vivo. Methods: Expression of the gastrin gene in the human CRC cell line LoVo was examined under normoxia and hypoxia by quantitative PCR and by radioimmunoassay. Gastrin expression was knocked down with shRNA, and the effect on cell proliferation was measured by cell counting, on cell apoptosis by annexin V staining, and on cell migration by Boyden chamber assay. The effect of gastrin knockdown on tumourigenesis in mouse xenografts was analysed by measurement of tumour volumes and weights, and by immunohistochemistry. Results: Gastrin gene expression in LoVo cells was stimulated by hypoxia via binding of hypoxia-inducible factor-1α to the gastrin promoter. The viability of gastrin knockdown cells exposed to hypoxia (1% O2) in vitro was diminished because of loss of resistance against hypoxia-induced apoptosis, and the effect was partly reversed by treatment with non-amidated, but not amidated, gastrin. Conditioned medium from control LoVo cells under hypoxia simulated proliferation but not migration, and the effect was blocked by an inhibitor of non-amidated gastrins, but not by an inhibitor of amidated gastrins. In xenografts in mice exposed to hypoxia (10% O2) for 21 days, tumour necrosis was significantly increased by knocking down gastrin expression. Conclusion: These results provide evidence that non-amidated gastrins are involved in the adaptation of CRCs to hypoxic microenvironments through increasing resistance to apoptosis.  相似文献   

10.
Baldwin GS  Curtain CC  Sawyer WH 《Biochemistry》2001,40(36):10741-10746
Uptake of dietary iron is essential for replenishment of body stores. A role for the hormone gastrin in iron uptake as a chelator of ferric ions in the gastric lumen has been proposed previously [Baldwin, G. S. (1992) Med. Hypotheses 38, 70-74]. Here, spectroscopic evidence of selective, high-affinity binding of ferric ions to progastrin-derived peptides in aqueous solution at low pH is provided. The maximum at 281 nm in the absorption spectrum of glycine-extended gastrin(17) at pH 4.0 increased (2.07 +/- 0.30)-fold in the presence of > or =2 equiv of ferric ions. Titration of glycine-extended gastrin(17) with ferric ions under stoichiometric conditions indicated that the stoichiometry of binding was 2.00 +/- 0.28 mol of Fe(3+)/mol of peptide. Fluorescence quenching experiments yielded values for the stoichiometry and apparent dissociation constant of the ferric ion-glycine-extended gastrin(17) complex at pH 4.0 of 2.39 +/- 0.17 mol of Fe(3+)/mol and 0.62 +/- 0.19 microM, respectively. No interaction was detected with Co(2+), Cu(2+), Mn(2+), or Cr(3+). Electron paramagnetic resonance spectroscopy suggested that the iron ligands were either oxygen or sulfur atoms. Fluorescence quenching experiments with peptides derived from the glycine-extended gastrin(17) sequence indicated that one or more of the five glutamic acid residues were necessary for iron binding. The binding of ferric ions by glycine-extended gastrin(17) at low pH is consistent with a role for progastrin-derived peptides in iron uptake from the lumen of the gastrointestinal tract.  相似文献   

11.
He H  Shehan BP  Barnham KJ  Norton RS  Shulkes A  Baldwin GS 《Biochemistry》2004,43(37):11853-11861
Nonamidated gastrins such as progastrin and glycine-extended gastrin17 (Ggly) induce cell proliferation and migration in vitro and colonic mucosal proliferation in vivo. Our earlier NMR study defined the structure of Ggly and showed that ferric ions are essential to its biological activity, with the first binding to Glu7 and the second to Glu8 and Glu9 (Pannequin, J. et al. (2002) J. Biol. Chem. 277, 48602-48609). The aims of this study were to define the minimum biologically active fragment of Ggly and to determine whether ferric ions were also required for its activity. Cell-proliferation studies with Ggly fragments containing the five glutamate residues showed that the nonapeptide LE(5)AYG, the octapeptide LE(5)AY, and the heptapeptides E(5)AY and LE(5)A were fully active and that their activity was dependent on the presence of ferric ions. The activity of the hexapeptides LE(5) and E(5)A and the pentapeptide E(5) was reduced and independent of the presence of iron. The stoichiometry of ferric ion binding to LE(5)AYG, LE(5)AY, and E(5)AY, determined by absorption spectroscopy, was 2 mol/mol. NMR spectroscopy showed that the nonapeptide LE(5)AYG and shorter fragments had no defined structure and that the iron-binding sites differed from those in Ggly. We conclude that, in contrast to amidated gastrins where the C-terminal tetrapeptide is the minimum bioactive fragment, the shortest fully active fragments of Ggly are the heptapeptides LE(5)A and E(5)AY. These observations indicate that extensive proteolytic processing may not completely inactivate Ggly and that bioactive forms that are not detected by current radioimmunoassays may be present in tissues and/or plasma.  相似文献   

12.
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.  相似文献   

13.
Most peptide hormone assays measure only fully processed bioactive peptides. Such assays are unsuited to detect hormone gene expression by alternative or attenuated prohormone processing (tissue- or cell-specific processing). The gastrin system is expressed in several different tissues and is therefore useful for studies of tissue-specific processing. Consequently we have developed a simple processing-independent radioimmunoanalysis for progastrin. Using antisera against the NH2-terminus of a sequence, devoid of processing sites (preprogastrin76-86) after trypsination of neighboring cleavage sites, the assay quantitates the mRNA product irrespective of degree of processing. Used together with a conventional assay for the mature carboxyamidated gastrins, the processing-independent analysis shows that in different tissues only 1 to 55% of the total translation product is processed to bioactive gastrins. Thus processing-independent analysis greatly improves the detection of gastrin gene expression at the peptide level. The principle of the assay should be applicable to all protein and peptide systems.  相似文献   

14.
Lessons from the gastrin knockout mice   总被引:4,自引:0,他引:4  
The gastrointestinal hormone, gastrin, was discovered a century ago as the second hormone in history. Subsequently, gastrin peptides have been identified and the genes encoding the hormone as well as its receptor have been cloned in several mammalian species including the mouse. This has facilitated the development of gastrin and gastrin receptor deficient mice as models for genetic dissection of the role of gastrins in maintaining gastric homeostasis and control of acid secretion. The gastrin knockout mice are achlorhydric due to inactivation of the ECL and parietal cells. Moreover, this achlorhydria is associated with the development of intestinal metaplasia and bacterial overgrowth, which ultimately lead to development of gastric tumors. Outside the stomach, gastrin deficiency alters pancreatic islet physiology and is associated with a moderate fasting hypoglycemia in the fasting state. But lack of gastrin does not impair islet regeneration. The association between progastrin, progastrin-derived processing intermediates and colorectal carcinogenesis has also been examined through genetic or chemical cancer induction in several mouse models, although the clinical relevance of these studies still remains to be proven. While others have focused on models of increased gastrin production, the present review will describe the lessons learned from the gastrin deficient mice. These mice help understand how dysregulation of gastrin secretion may be implicated in human disease.  相似文献   

15.
The uptake of iron from transferrin by isolated rat hepatocytes varies in parallel with plasma membrane NADH:ferricyanide oxidoreductase activity, is inhibited by ferricyanide, ferric, and ferrous iron chelators, divalent transition metal cations, and depends on calcium ions. Iron uptake does not depend on endosomal acidification or endocytosis of transferrin. The results are compatible with a model in which iron, at transferrin concentrations above that needed to saturate the transferrin receptor, is taken up from transferrin predominantly by mechanisms located to or contiguous with the plasma membrane. The process involves labilization and reduction of transferrin-bound iron by cooperative proton and electron fluxes. A model which combines the plasma membrane mechanism and the receptor-mediated endocytosis mechanism is presented.  相似文献   

16.
Binding of ferric ions to the hormone glycine-extended gastrin17 is essential for biological activity (Pannequin, J., et al. (2002). J. Biol. Chem. 277: 48602-48609). The aims of the current study were to determine the properties of the complex between recombinant human progastrin6-80 and ferric ions. The stoichiometry and affinity of ferric ion binding were determined by fluorescence spectroscopy. The selectivity of metal ion binding and the stability of the 59Fe(III) progastrin6-80 complex were determined by equilibrium dialysis. The stoichiometry of 2.5 +/- 0.1 moles Fe/mole progastrin, and the apparent dissociation constant of 2.2 +/- 0.1 microM, were similar to the values previously determined for glycine-extended gastrin17 at pH 4.0. Of the four trivalent and seven divalent metal ions tested, only ferrous and ferric ions bound to progastrin6-80. The ferric ion-progastrin complex was extremely stable, with a half-life of 117 +/- 8 days at pH 7.6 and 25 degrees C. We conclude that recombinant human progastrin6-80 selectively binds ferrous and ferric ions with high affinity in a stable 2:1 complex.  相似文献   

17.
Chinchilla "big" and "little" gastrins   总被引:1,自引:0,他引:1  
Gastrin heptadecapeptides (gastrins I and II which differ in the presence of sulfate on the tyrosine of the latter) have been purified and sequenced from several mammalian species including pig, dog, cat, sheep, cow, human and rat. A 34 amino acid precursor ("big" gastrin), generally accounting for only 5% of total gastrin immunoreactivity, has been purified and sequenced only from the pig, human, dog and goat. Recently we have demonstrated that guinea pig (GP) "little" gastrin is a hexadecapeptide due to a deletion of a glutamic acid in the region 6-9 from its NH2-terminus and that GP "big" gastrin is a 33 amino acid peptide. The chinchilla, like the GP, is a New World hystricomorph. This report describes the extraction and purification of "little" and "big" gastrins from 31 chinchilla antra. Chinchilla "little" gastrin is a hexadecapeptide with a sequence identical to that of the GP and its "big" gastrin is a 33 amino acid peptide with the following sequence: (See text)  相似文献   

18.
Opossum (Didelphis virginiana) "little" and "big" gastrins   总被引:1,自引:0,他引:1  
1. "Little" gastrins from most mammalian species are 17 amino acid peptides and the precursor "big" gastrins are 34 amino acid peptides. 2. "Little" gastrins of the New World hystricomorphs, guinea-pig and chinchilla, are 16 amino acid peptides due to deletion of a glutamic acid in the region 6-9 from their NH2-terminus and the corresponding "big" gastrins are 33 amino acid peptides. 3. Antral gastrins from the opossum, a New World marsupial, have a glutamic acid deletion in the same region as the hystricomorph gastrins. 4. Opossum "big" gastrin is a 33 amino acid peptide with the following sequence: less than ELGPQDLPYLTADLSKKQGPWLEEEEAYGWMDF#.  相似文献   

19.
Iron transferrin has been found to induce a mean 10-fold increase in the activity of protein kinase C in CCRF-CEM cells. This increase was not detectable up to 45 min after treatment of cells with iron transferrin, although after 60 min, a maximal increase in enzyme activity was observed. Similarly, iron transferrin at concentrations of 0.1-0.5 microgram/ml did not alter protein kinase C activity, while concentrations of iron transferrin of 1-100 micrograms/ml induced a maximal increase in enzyme activity. Apotransferrin and iron in the form of ferric citrate, as well as complexes of transferrin with copper, nickel, zinc, manganese, and cobalt did not increase protein kinase C activity. Additionally, CCRF-CEM cells pretreated with either actinomycin D or cycloheximide and then incubated with iron transferrin did not exhibit increased enzyme activity. Treatment with iron transferrin was found to have no effect on protein kinase C activity in normal human peripheral blood lymphocytes and in HL60, Daudi, and U937 cells. However, normal lymphocytes stimulated with phytohemagglutinin for 48 hr exhibited a 2-fold increase in protein kinase C activity following treatment with iron transferrin. These results indicate a specific effect of iron transferrin on protein kinase C activity in CCRF-CEM cells and in mitogen-stimulated human lymphocytes that may occur through increased synthesis of the enzyme.  相似文献   

20.
The three subtypes of peroxisome proliferator activated-receptors (PPARalpha, delta and gamma) control the storage and metabolism of fatty acids. Treatment of rats with the PPARalpha ligand ciprofibrate increases serum gastrin concentrations, and several lines of evidence suggest that non-amidated gastrins act as growth factors for the colonic mucosa. The aim of the present study was to investigate the expression of PPARs and the effect of PPAR ligands on gastrin production and cell proliferation in human colorectal carcinoma (CRC) cell lines. mRNAs for all three PPAR subtypes were detected by PCR in all CRC cell lines tested. The concentrations of progastrin, but not of glycine-extended or amidated gastrin, measured by radioimmunoassay in LIM 1899 conditioned media and cell extracts were significantly increased by treatment with the PPARalpha ligand clofibrate. Similar increases in progastrin were seen following treatment with the PPARalpha ligands ciprofibrate and fenofibrate, but not with bezafibrate, gemfibrozil or Wy 14643. The PPARgamma agonist rosiglitazone had no significant effect on progastrin production. The PPARalpha ligand clofibrate also stimulated proliferation of the LIM 1899 cell line. We conclude that some PPARalpha ligands increase progastrin production by the human CRC cell line LIM 1899, and that clofibrate increases proliferation of LIM 1899 cells. These studies have revealed a relationship between PPARs and gastrin, two regulatory molecules implicated in the pathogenesis of CRC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号