首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low temperature EPR spectroscopy was used to characterise Mycobacterium tuberculosis catalase-peroxidase in its resting ferric haem state. Several high spin ferric haem forms and no low spin forms were found in the enzyme samples frozen in methanol on dry ice. The EPR spectra depended not only on the pH but also on the buffer type. As a general trend, the higher the pH, the greater the ‘rhombic’ fraction of the high spin ferric haem that was observed. The rhombic form was characterised by well separated two lines in the g = 6 region whereas in the ‘axial’ form the two lines overlap. This pH dependence of the equilibrium of axial and rhombic ferric haem forms is also seen in rapidly freeze-quenched samples. Different high spin ferric haem forms were monitored during a 3 week storage of the enzyme at 4 °C. For some forms, extremal dependences, i.e. those progressing via maxima or minima over storage time, were found. This indicates that the mechanism of the time-dependent transition from one high spin ferric haem form to another must be more complex than a simple single site oxidation.  相似文献   

2.
Reductive titrations of the dissimilatory hexa-haem nitrite reductase, Wolinella succinogenes, with methyl viologen semiquinone (MV) and sodium dithionite, have been followed at room temperature by absorption, natural (CD) and magnetic circular dichroism (MCD) spectroscopies and at liquid helium temperature by electron paramagnetic resonance (EPR) and MCD spectroscopies. The nature of the reduced enzyme depends on the reductant employed. At room temperature a single high-spin ferrous haem, observed by MCD after reduction with MV, is absent from dithionite reduced samples. It is suggested that a product of dithionite oxidation becomes bound with high affinity to the reduced state of the enzyme causing the ferrous haem to become low-spin. The site occupied is likely to be the substrate binding haem. The course of the titration with MV at room temperature shows the reduction of high-spin ferric to high-spin ferrous haem. Since the EPR spectrum reveals the presence of an unusual high-low spin ferric haem pair in the oxidised state we propose that the active site of the enzyme is a novel haem pair consisting of one high (5-coordinate) and one low-spin (6 coordinate) haem, magnetically coupled and possibly bridged by a histidinate ligand.  相似文献   

3.
Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.  相似文献   

4.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

5.
Structural alterations of the haem vicinity of the high-spin derivatives of bovine ferric myoglobin (metmyoglobin) and human haemoglobin and the changes of the interaction with inositol hexaphosphate induced by ethanediol were monitored by solvent-proton magnetic relaxation. On addition of ethanediol up to 60% the fluoromet derivatives exhibit a gradual increase in the accessibility of the haem for the molecules from the solvent. In aquomethaemoglobin solutions with more than 25% ethanediol there is no unique explanation of proton magnetic relaxation. Ethanediol enhances the binding of inositol hexaphosphate to methaemoglobin, but the structural consequences of this binding on the haem-pockets seem to be diminished. The mechanisms of the observed structural and functional alterations of myoglobin as well as haemoglobin tetramer are discussed here.  相似文献   

6.
Haemoglobin-based oxygen carriers can undergo oxidation of ferrous haemoglobin into a non-functional ferric form with enhanced rates of haem loss. A recently developed human haemoglobin conjugated to maleimide-activated poly(ethylene glycol), termed MP4, has unique physicochemical properties (increased molecular radius, high oxygen affinity and low cooperativity) and lacks the typical hypertensive response observed with most cell-free haemoglobin solutions. The rate of in vitro MP4 autoxidation is higher compared with the rate for unmodified SFHb (stroma-free haemoglobin), both at room temperature (20-22 degrees C) and at 37 degrees C (P<0.001). This appears to be attributable to residual catalase activity in SFHb but not MP4. In contrast, MP4 and SFHb showed the same susceptibility to oxidation by reactive oxygen species generated by a xanthine-xanthine oxidase system. Once fully oxidized to methaemoglobin, the rate of in vitro haem loss was five times higher in MP4 compared with SFHb in the fast phase, which we assign to the beta subunits, whereas the slow phase (i.e. haem loss from alpha chains) showed similar rates for the two haemoglobins. Formation of MP4 methaemoglobin in vivo following transfusion in rats and humans was slower than predicted by its first-order in vitro autoxidation rate, and there was no appreciable accumulation of MP4 methaemoglobin in plasma before disappearing from the circulation. These results show that MP4 oxidation and haem loss characteristics observed in vitro provide information regarding the effect of poly(ethylene glycol) conjugation on the stability of the haemoglobin molecule, but do not correspond to the oxidation behaviour of MP4 in vivo.  相似文献   

7.
Structure and Subunit Interaction of Haemoglobin M Milwaukee   总被引:6,自引:0,他引:6  
In haemoglobin M Milwaukee, substitution of a glutamic acid for a valine in the haem pocket of the β chains leads to a link between the γ carboxyl group and the ferric iron. Interaction between ferrous and ferric haems is observed.  相似文献   

8.
The six-coordinate monohaem ferricytochrome b-562 from Escherichia coli exhibits two haem-linked pH-dependent transitions detected by NMR and optical spectroscopy. Only one of these transitions, that of the Fe(III)-coordinated His-102, is detected by EPR and MCD; the ionisation of a haem propionate is not. Both ionisations are redox-state-dependent and the midpoint redox potential of the protein is markedly pH-dependent. Over the pH range 5.0 to 8.5 the potential drops from 260 mV to 110 mV and at least five single proton ionisations are responsible for this. In addition to the two spectroscopically identified ferricytochrome ionisations, there are at least three unidentified ionisations, two of which occur in the ferrous protein. From a consideration of the X-ray structure, together with NMR data, it seems probable that at least one of these ionisations involves an amino acid carboxylate. The X-ray structure also suggests that the relatively low pKa of His-102 is a result of its proximity to Arg-98. However, an appreciable interaction between these groups requires that the solution conformation differs slightly from the X-ray structure. The fast rate of electron self-exchange, over 4 X 10(6) M-1 X s-1 at 315 K and pH* 7, may be a reflection of the fact that, as shown by the X-ray structure, a large amount of the haem and axial histidine ligand are exposed at the molecular surface with an asymmetric distribution of charged groups surrounding them.  相似文献   

9.
Nuclear magnetic resonance studies of Rhodospirillum rubrum cytochrome c'   总被引:1,自引:0,他引:1  
Cytochrome c' from Rhodospirillum rubrum has been studied by proton magnetic resonance (NMR) at 270 MHz. The pH and temperature-dependence properties as well as proton water relaxation enhancement and bulk susceptibility measurements were examined. We conclude that the fifth ligand to the iron is histidine. The pH-dependent shift of the heme methyl resonances of the ferric protein shows pKa's at 5.8 and 8.7. The low-pH equilibrium causes only minor changes in the properties of the protein. However, the high-pH equilibrium causes large changes throughout the NMR spectra which correlate with the reported visible spectral changes. These NMR spectral changes are compared with the low-temperature EPR and M?ssbauer spectroscopic data. Analyses of the NMR data show that a second histidine, which is present in the sequence of c' from R. rubrum but is not conserved in other cytochromes c', is not a "distal" histidine. The nature of the sixth ligand and the significance of the high-pH transition are discussed.  相似文献   

10.
The proton NMR spectra of the tetrahaem cytochrome c3 from Desulfovibrio gigas were examined while varying the pH and the redox potential. The analysis of the NMR reoxidation pattern was based on a model for the electron distribution between the four haems that takes into account haem-haem redox interactions. The intramolecular electron exchange is fast on the NMR time scale (larger than 10(5) s-1). The NMR data concerning the pH dependence of the chemical shift of haem methyl resonances in different oxidation steps and resonance intensities are not compatible with a non-interacting model and can be explained assuming a redox interaction between the haems. A complete analysis at pH* = 7.2 and 9.6, shows that the haem-haem interacting potentials cover a range from -50 mV to +60 mV. The midpoint redox potentials of some of the haems, as well as some of their interacting potentials, are pH-dependent. The physiological relevance of the modulation of the haem midpoint redox potentials by both the pH and the redox potential of the solution is discussed.  相似文献   

11.
In order to probe the active site of the heme protein indoleamine 2,3-dioxygenase, magnetic and natural circular dichroism (MCD and CD) and electron paramagnetic resonance (EPR) studies of the substrate (L-tryptophan)-free and substrate-bound enzyme with and without various exogenous ligands have been carried out. The MCD spectra of the ferric and ferrous derivatives are similar to those of the analogous myoglobin and horseradish peroxidase species. This provides strong support for histidine imidazole as the fifth ligand to the heme iron of indoleamine 2,3-dioxygenase. The substrate-free native ferric enzyme exhibits predominantly high-spin EPR signals (g perpendicular = 6, g parallel = 2) along with weak low-spin signals (g perpendicular = 2.86, 2.28, 1.60); similar EPR, spin-state and MCD features are found for the benzimidazole adduct of ferric myoglobin. This suggests that the substrate-free ferric enzyme has a sterically hindered histidine imidazole nitrogen donor sixth ligand. Upon substrate binding, noticeable MCD and EPR spectral changes are detected that are indicative of an increased low spin content (from 30 to over 70% at ambient temperature). Concomitantly, new low spin EPR signals (g = 2.53, 2.18, 1.86) and MCD features characteristic of hydroxide complexes of histidine-ligated heme proteins appear. For almost all of the other ferric and ferrous derivatives, only small substrate effects are observed with MCD spectroscopy, while substantial substrate effects are seen with CD spectroscopy. Thus, changes in the heme coordination structure of the ferric enzyme and in the protein conformation at the active site of the ferric and ferrous enzyme are induced by substrate binding. The observed substrate effects on the ferric enzyme may correlate with the previously observed kinetic substrate inhibition of indoleamine 2,3-dioxygenase activity, while such effects on the ferrous enzyme suggest the possibility that the substrate is activated during turnover.  相似文献   

12.
The nonsymbiotic tomato hemoglobin SOLly GLB1 (Solanum lycopersicon) is shown to form a homodimer of approximately 36 kDa with a high affinity for oxygen. Furthermore, our combined ultraviolet/visible, resonance Raman, and continuous wave electron paramagnetic resonance (EPR) measurements reveal that a mixture of penta- and hexacoordination of the heme iron is found in the deoxy ferrous form, whereas the ferric form shows predominantly a bis-histidine ligation (F8His-Fe(2+/3+)-E7His). This differs from the known forms of vertebrate hemoglobins and myoglobins. We have successfully applied our recently designed pulsed-EPR strategy to study the low-spin ferric form of tomato hemoglobin. These experiments reveal that, in ferric SOLly GLB1, one of the histidine planes is rotated 20 degrees (+/-10 degrees ) away from a N(heme)-Fe-N(heme) axis. Additionally, the observed g-values indicate a quasicoplanarity of the histidine ligands. From the HYSCORE (hyperfine sublevel correlation) measurements, the hyperfine and nuclear quadrupole couplings of the heme and histidine nitrogens are identified and compared with known EPR/ENDOR data of vertebrate Hbs and cytochromes. Finally, the ligand binding kinetics, which also indicate that the ferrous tomato Hb is only partially hexacoordinated, will be discussed in relation with the heme-pocket structure. The similarities and differences with other known nonsymbiotic plant hemoglobins will be highlighted.  相似文献   

13.
The reactivity of recombinant pea cytosolic ascorbate peroxidase (rAPX) towards H2O2, the nature of the intermediates and the products of the reaction have been examined using UV/visible and EPR spectroscopies together with HPLC. Compound I of rAPX, generated by reaction of rAPX with 1 molar equivalent of H2O2, contains a porphyrin pi-cation radical. This species is unstable and, in the absence of reducing substrate, decays within 60 s to a second species, compound I*, that has a UV/visible spectrum [lambda(max) (nm) = 414, 527, 558 and 350 (sh)] similar, but not identical, to those of both horseradish peroxidase compound II and cytochrome c peroxidase compound I. Small but systematic differences were observed in the UV/visible spectra of compound I* and authentic rAPX compound II, generated by reaction of rAPX with 1 molar equivalent H2O2 in the presence of 1 molar equivalent of ascorbate [lambda(max) (nm) = 416, 527, 554, 350 (sh) and 628 (sh)]. Compound I* decays to give a 'ferric-like' species (lambda(max) = 406 nm) that is not spectroscopically identical to ferric rAPX (lambda(max) = 403 nm) with a first order rate constant, k(decay)' = (2.7 +/- 0.3) x 10(-4) s(-1). Authentic samples of compound II evolve to ferric rAPX [k(decay) = (1.1 +/- 0.2) x 10(-3) s(-1)]. Low temperature (10 K) EPR spectra are consistent with the formation of a protein-based radical, with g values for compound I* (g parallel = 2.038, g perpendicular = 2.008) close to those previously reported for the Trp191 radical in cytochrome c peroxidase (g parallel = 2.037, g perpendicular = 2.005). The EPR spectrum of rAPX compound II was essentially silent in the g = 2 region. Tryptic digestion of the 'ferric-like' rAPX followed by RP-HPLC revealed a fragment with a new absorption peak near 330 nm, consistent with the formation of a hydroxylated tryptophan residue. The results show, for the first time, that rAPX can, under certain conditions, form a protein-based radical analogous to that found in cytochrome c peroxidase. The implications of these data are discussed in the wider context of both APX catalysis and radical formation and stability in haem peroxidases.  相似文献   

14.
The obligately anaerobic bacterium Porphyromonas gingivalis produces characteristic black-pigmented colonies on blood agar. It is thought that the black pigmentation is caused by haem accumulation and is related to virulence of the microorganism. P. gingivalis cells expressed a prominent 19 kDa protein when grown on blood agar plates. Analysis of its N-terminal amino acid sequence indicated that the 19 kDa protein was encoded by an internal region (HGP15 domain) of an arginine-specific cysteine proteinase (Arg-gingipain, RGP)-encoding gene ( rgp1 ) and was also present in genes for lysine-specific cysteine proteinases ( prtP and kgp ) and a haemagglutinin ( hagA ) of P. gingivalis . The HGP15 domain protein was purified from an HGP15-overproducing Escherichia coli and was found to have the ability to bind to haemoglobin in a pH-dependent manner. The anti-HGP15 antiserum reacted with the 19 kDa haemoglobin-binding protein in the envelope of P. gingivalis. P. gingivalis wild-type strain showed pH-dependent haemoglobin adsorption, whereas its non-pigmented mutants that produced no HGP15-related proteins showed deficiency in haemoglobin adsorption. These results strongly indicate a close relationship among HGP15 production, haemoglobin adsorption and haem accumulation of P. gingivalis .  相似文献   

15.
A detailed study is presented of the room-temperature absorption, natural and magnetic circulation-dichroism (c.d. and m.c.d.) spectra of cytochrome c oxidase and a number of its derivatives in the wavelength range 700-1900 nm. The spectra of the reduced enzyme show a strong negative c.d. band peaking at 1100nm arising from low-spin ferrous haem a and a positive m.c.d. peak at 780nm assigned to high-spin ferrous haem a3. Addition of cyanide ion doubles the intensity of the low-spin ferrous haem c.d. band and abolishes reduced carbonmonoxy derivative the haem a32+-CO group shows no c.d. or m.c.d. bands at wavelengths longer than 700nm. A comparison of the m.c.d. spectra of the oxidized and cyanide-bound oxidized forms enables bands characteristic of the high-spin ferric form of haem a33+ to be identified between 700 and 1300nm. At wavelengths longer than 1300nm a broad positive m.c.d. spectrum, peaking at 1600nm, is observed. By comparison with the m.c.d. spectrum of an extracted haem a-bis-imidazole complex this m.c.d. peak is assigned to one low-spin ferric haem, namely haem a3+. On binding of cyanide to the oxidized form of the enzyme a new, weak, m.c.d. signal appears, which is assigned to the low-spin ferric haem a33+-CN species. A reductive titration, with sodium dithionite, of the cyanide-bound form of the enzyme leads to a partially reduced state in which low-spin haem a2+ is detected by means of an intense negative c.d. peak at 1100 nm and low-spin ferric haem a33+-CN gives a sharp positive m.c.d. peak at 1550nm. The c.d. and m.c.d. characteristics of the 830nm absorption band in oxidized cytochrome c oxidase are not typical of type 1 blue cupric centres.  相似文献   

16.
The present study characterizes the serial reactions of H2O2 with compounds I and II of lignin peroxidase isozyme H1. These two reactions constitute part of the pathway leading to formation of the oxy complex (compound III) from the ferric enzyme. Compounds II and III are the only complexes observed; no compound III* is observed. Compound III* is proposed to be an adduct of compound III with H2O2, formed from the complexation of compound III with H2O2 (Wariishi, H., and Gold, M. H. (1990) J. Biol. Chem. 265, 2070-2077). We provide evidence that demonstrates that the spectral data, on which the formation of compound III* is based, are merely an artifact caused by enzyme instability and, therefore, rule out the existence of compound III*. The reactions of compounds II and III with H2O2 are pH-dependent, similar to that observed for reactions of compounds I and II with the reducing substrate veratryl alcohol. The spontaneous decay of the compound III of lignin peroxidase results in the reduction of ferric cytochrome c. The reduction is inhibited by superoxide dismutase, indicating that superoxide is released during the decay. Therefore, the lignin peroxidase compound III decays to the ferric enzyme through the dissociation of superoxide. This mechanism is identical with that observed with oxymyoglobin and oxyhemoglobin but different from that for horseradish peroxidase. Compound III is capable of reacting with small molecules, such as tetranitromethane (a superoxide scavenger) and fluoride (a ligand for the ferric enzyme), resulting in ferric enzyme and fluoride complex formation, respectively.  相似文献   

17.
A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.  相似文献   

18.
Myeloperoxidase was purified from human polymorphonuclear leukocytes and the effect of chloride upon the EPR and potentiometric properties was studied. The redox titration between the ferrous and ferric states of the enzyme yielded n = 1 Nernst plots between pH 9 and 4, with clear isosbestic points in the optical spectra during the redox change. The midpoint potential (Em) between the ferric and ferrous forms of the enzyme exhibited a pH-dependent change between pH 4 and 9, and the effect of added chloride ion indicated that Cl- competed with OH- for a binding site on the enzyme. Interestingly, the pH dependence of the Em indicated that the overall redox reactions of the enzyme was: ferric myeloperoxidase + 2e- + 1H+ = ferrous myeloperoxidase. Myeloperoxidase exhibited a rhombic high spin EPR signal which exhibited reduced rhombicity upon the binding of chloride. Our results strongly suggest that chloride binds to the sixth coordination position of the chlorin iron in myeloperoxidase by replacing the water which is the sixth ligand in the resting state. It is also concluded that the two iron centers are identical and that there is no interaction between them.  相似文献   

19.
NiRs (nitrite reductases) convert nitrite into NO in the denitrification process. RpNiR (Ralstonia pickettii NiR), a new type of dissimilatory Cu-containing NiR with a C-terminal haem c domain from R. pickettii, has been cloned, overexpressed in Escherichia coli and purified to homogeneity. The enzyme has a subunit molecular mass of 50515 Da, consistent with sequence data showing homology to the well-studied two-domain Cu NiRs, but with an attached C-terminal haem c domain. Gel filtration and combined SEC (size-exclusion chromatography)-SAXS (small angle X-ray scattering) analysis shows the protein to be trimeric. The metal content of RpNiR is consistent with each monomer having a single haem c group and the two Cu sites being metallated by Cu(2+) ions. The absorption spectrum of the oxidized as-isolated recombinant enzyme is dominated by the haem c. X-band EPR spectra have clear features arising from both type 1 Cu and type 2 Cu centres in addition to those of low-spin ferric haem. The requirements for activity and low apparent K(m) for nitrite are similar to other CuNiRs (Cu-centre NiRs). However, EPR and direct binding measurements of nitrite show that oxidized RpNiR binds nitrite very weakly, suggesting that substrate binds to the reduced type 2 Cu site during turnover. Analysis of SEC-SAXS data suggests that the haem c domains in RpNiR form extensions into the solvent, conferring a high degree of conformational flexibility in solution. SAXS data yield R(g) (gyration radius) and D(max) (maximum particle diameter) values of 43.4 ? (1 ?=0.1 nm) and 154 ? compared with 28 ? and 80 ? found for the two-domain CuNiR of Alcaligenes xylosoxidans.  相似文献   

20.
Hmu O, a heme degradation enzyme in Corynebacterium diphtheriae, forms a stoichiometric complex with iron protoporphyrin IX and catalyzes the oxygen-dependent conversion of hemin to biliverdin, carbon monoxide, and free iron. Using a multitude of spectroscopic techniques, we have determined the axial ligand coordination of the heme-Hmu O complex. The ferric complex shows a pH-dependent reversible transition between a water-bound hexacoordinate high spin neutral pH form and an alkaline form, having high spin and low spin states, with a pK(a) of 9. (1)H NMR, EPR, and resonance Raman of the heme-Hmu O complex establish that a neutral imidazole of a histidine residue is the proximal ligand of the complex, similar to mammalian heme oxygenase. EPR of the deoxy cobalt porphyrin IX-Hmu O complex confirms this proximal histidine coordination. Oxy cobalt-Hmu O EPR reveals a hydrogen-bonding interaction between the O(2) and an exchangeable proton in the Hmu O distal pocket and two distinct orientations for the bound O(2). Mammalian heme oxygenase has only one O(2) orientation. This difference and the mixed spin states at alkaline pH indicate structural differences in the distal environment between Hmu O and its mammalian counterpart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号