首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primordial germ cells (PGCs) are the only cells in developing embryos that can transmit genetic information to the next generation. PGCs therefore have considerable potential value for gene banking and cryopreservation, particularly via production of donor gametes using germ-line chimeras. In some animal species, including teleost fish, the feasibility of using PGC transplantation to obtain donor-derived offspring, within and between species, has been demonstrated. Successful use of PGC transplantation to produce germ-line chimeras is absolutely dependent on the migration of the transplanted cells from the site of transplantation to the host gonadal region. Here, we induced germ-line chimeras between teleost species using two different protocols: blastomere transplantation and single PGC transplantation. We evaluated the methods using the rate of successful migration of transplanted PGCs to the gonadal region of the host embryo. First, we transplanted blastomeres from zebrafish, pearl danio, goldfish, or loach into blastula-stage zebrafish embryos. Some somatic cells, derived from donor blastomeres, were co-transplanted with the PGCs and formed aggregates in the host embryos; a low efficiency of PGC transfer was achieved. Second, a single PGC from the donor species was transplanted into a zebrafish embryo. In all inter-species combinations, the donor PGC migrated toward the gonadal region of the host embryo at a comparatively high rate, regardless of the phylogenetic relationship of the donor and host species. These transplantation experiments showed that the mechanism of PGC migration is highly conserved beyond the family barrier in fish and that transplantation of a single PGC is an efficient method for producing inter-species germ-line chimeras.  相似文献   

2.
Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.  相似文献   

3.
We describe a technique for producing germ-line chimeric rainbow trout, Oncorhynchus mykiss, by microinjection of the isolated blastomeres. FITC-labeled donor cells and non-labeled recipient embryos at various developmental stages between the early blastula and early gastrula stages were used for cell transplantation. The chimera formation rate and the degree of donor cell distribution in recipient embryos were evaluated at both the late gastrula stage (5 days post fertilization (dpf)) and the 40-somite stage (10 dpf). Among the six combinations of developmental stages of donor and recipient embryos, the combination of midblastula (2.5 dpf) donor cells and early blastula (1.5 dpf) recipient embryos gave the highest chimera formation rate and the best distribution pattern of donor cells. Using this combination, chimeric rainbow trout were produced with donor blastomeres from dominant orange-colored mutant embryos and wild-type recipient embryos. Of the 238 chimeric embryos produced, 28 (12%) hatched normally and 14 of the 28 fry (50%) had donor-derived orange body color. To test for germ-line transmission of donor cells, gametes obtained from the matured chimeras were fertilized with gametes from wild-type fish. Of the 19 matured chimeras, 6 (32%) yielded donor-derived orange-colored progeny, in addition to wild-type siblings. The contribution rates of donor cells in the germ-line ranged from 0.3 to 14%. This technique for producing germ-line chimeras should be a powerful tool for cell-mediated gene transfer in rainbow trout. Especially, if body color mutants are used for either donor cells or the host embryos, it will be possible to easily concentrate F1 transgenic embryos derived from transplanted donor cells by body color screening. Mol. Reprod. Dev. 59: 380-389, 2001.  相似文献   

4.
Primordial germ cells (PGCs) generate gametes, the only cells that can transmit genetic information to the next generation. A previous report demonstrated that a fusion construct of green fluorescent protein (gfp) and zebrafish nos 1 3UTR mRNA could be used to label PGCs in a number of fish species. Here, we sought to exploit this labeling strategy to isolate teleost PGCs by flow cytometry (FCM), and to use these isolated PGCs to examine germ cell migration to the gonadal region. In zebrafish, medaka and goldfish, the PGCs were labeled by injecting the gfp-nos1 3UTR mRNA into 1- 4 cell embryos. When the embryos had developed to the somitogenesis or later stages, they were enzymatically disaggregated and GFP positive cells isolated using FCM. PGCs in the different species clustered in the same segments of the FCM scatter diagrams for total embryonic cells produced by plotting the forward scatter intensity against GFP intensity. In situ hybridization showed that the sorted zebrafish cells expressed vasa RNA in their cytoplasm, suggesting that they were PGCs. When the migration ability of the sorted cells from zebrafish was examined in an in vivo transplantation experiment, approximately 30% moved to the gonadal region of host embryos. These observations demonstrate that PGCs can be isolated without use of transgenic fishes and that the isolated PGCs retain the ability to migrate. Our data indicate that this technique will be of value for isolating PGCs from a range of fish species.  相似文献   

5.
利用密度梯度离心等方法从孵化51-56 h的石歧杂鸡胚血液中提取PGCs,用自制的玻璃注射针将PGCs注射到孵化2.5 d的H系受体鸡胚中制备种系嵌和体鸡;通过筛选AFLP引物建立起家禽嵌和体的AFLP检测方法;经检测20个发育的PGCs受体鸡胚中有8个种系嵌和体,嵌和率为40%。  相似文献   

6.
Primordial germ cells (PGCs) are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4) are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica) embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio) for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders).  相似文献   

7.
Primordial germ cell (PGC) formation is pivotal for fertility. Mammalian PGCs are epigenetically induced without the need for maternal factors and can also be derived in culture from pluripotent stem cells. In egg-laying animals such as Drosophila and zebrafish, PGCs are specified by maternal germ plasm factors without the need for inducing factors. In these organisms, PGC formation and cultivation in vitro from indeterminate embryonic cells have not been possible. Here, we report PGC formation and cultivation in vitro from blastomeres dissociated from midblastula embryos (MBEs) of the fish medaka (Oryzias latipes). PGCs were identified by using germ-cell-specific green fluorescent protein (GFP) expression from a transgene under the control of the vasa promoter. Embryo perturbation was exploited to study PGC formation in vivo, and dissociated MBE cells were cultivated under various conditions to study PGC formation in vitro. Perturbation of somatic development did not prevent PGC formation in live embryos. Dissociated MBE blastomeres formed PGCs in the absence of normal somatic structures and of known inducing factors. Most importantly, under culture conditions conducive to stem cell derivation, some dissociated MBE blastomeres produced GFP-positive PGC-like cells. These GFP-positive cells contained genuine PGCs, as they expressed PGC markers and migrated into the embryonic gonad to generate germline chimeras. Our data thus provide evidence for PGC preformation in medaka and demonstrate, for the first time, that PGC formation and derivation can be obtained in culture from early embryos of medaka as a lower vertebrate model.  相似文献   

8.
Migration of primordial germ cells (PGCs) from their site of specification towards the developing gonad is controlled by directional cues from somatic tissues. Although in several animals the PGCs are attracted by signals emanating from their final target, the gonadal mesoderm, little is known about the mechanisms that control earlier steps of migration. We provide evidence that a key step of zebrafish PGC migration, in which the PGCs become organized into bilateral clusters in the anterior trunk, is regulated by attraction of PGCs towards an intermediate target. Time-lapse observations of wild-type and mutant embryos reveal that bilateral clusters are formed at early somitogenesis, owing to migration of PGCs towards the clustering position from medial, posterior and anterior regions. Furthermore, PGCs migrate actively relative to their somatic neighbors and they do so as individual cells. Using mutants that exhibit defects in mesoderm development, we show that the ability to form PGC clusters depends on proper differentiation of the somatic cells present at the clustering position. Based on these findings, we propose that these somatic cells produce signals that attract PGCs. Interestingly, fate-mapping shows that these cells do not give rise to the somatic tissues of the gonad, but rather contribute to the formation of the pronephros. Thus, the putative PGC attraction center serves as an intermediate target for PGCs, which later actively migrate towards a more posterior position. This final step of PGC migration is defective in hands off mutants, where the intermediate mesoderm of the presumptive gonadal region is mispatterned. Our results indicate that zebrafish PGCs are guided by attraction towards two signaling centers, one of which may represent the somatic tissues of the gonad.  相似文献   

9.
Transforming growth factor beta (TGFbeta) inhibits proliferation and promotes the migration of primordial germ cells (PGCs) towards explants of gonadal ridges in vitro. However, its effects in vivo are still unclear. Here, we analyzed the behavior of PGCs in embryos lacking TGFbeta signaling via the type I receptor ALK5. TGFbeta in vivo was neither a chemoattractant for PGCs, nor did it affect their proliferation during migration towards the gonadal ridges up to embryonic day (E)10. Unexpectedly, the absence of TGFbeta signaling in fact resulted in significant facilitation of PGC migration out of the hindgut, due to the reduced deposition of collagen type I surrounding the gut of Alk5-deficient mutant embryos. Migratory PGCs adhere strongly to collagen; therefore, reduced collagen type I along the gut may result in reduced adhesion, facilitating migration into the dorsal mesenterium and gonadal ridges. Our results provide new evidence for the role of TGFbeta signaling in migration of PGCs in vivo distinct from that described previously.  相似文献   

10.
Intrinsic primordial germ cells (PGCs) from stage 27 (5-day-old) chick embryonic germinal ridges were cultured in vitro for a further 5 days, and shown to proliferate on stroma cells derived from the germinal ridge. To determine whether these cultured PGCs could colonize and contribute to the germ-line, PGCs were isolated by gentle pipetting, labeled with PKH26 fluorescent dye and injected into the blood stream of stage 17 (2.5-day-old) chick embryos. The recipient embryos were incubated until they reached stage 28. Thin sections of these embryos were analysed by fluorescent confocal laser microscopy. These analyses showed that the labeled donor PGCs had migrated into the germinal ridges of the recipient embryos, and transplanted PGCs had undergone at least 3-7 divisions. These results suggest that PGCs that had passed far beyond the migration stage in vivo were still able to migrate, colonize and proliferate in recipient chick embryonic gonads.  相似文献   

11.
12.
不同时期鸡胚原始生殖细胞分离的研究   总被引:1,自引:1,他引:0  
采用Ficoll密度梯度离心,酶解离两种方法在鸡胚孵化的第14期、19期、28期,分离、培养鸡胚中的原始生殖细胞(PGCs)。探索PGCs分离、培养的适宜时期及方法,以期获得较多数量,较高活力的PGCs作介导生产转基因鸡。结果表明:1.提取、分离PGCs的最佳时期依次为19期、28期。2.两种分离方法均能分离到一定数量的PGCs细胞。但在19期和28期,酶解离法分离到的PGCs的相对数量较多,存活时间较长,是一种较适宜的分离方法。  相似文献   

13.
Busulfan (1,4-butanediol dimethanesulfonate) was used to deplete endogenous germ cells for the enhanced production of chicken germline chimeras. Utilizing immunohistochemical identification of primordial gem cells (PGCs) in Stage 27 chicken embryos, two delivery formulations were compared relative to the degree of endogenous PGC depletion, a busulfan suspension (BS) and a solublized busulfan emulsion (SBE). Both busulfan treatments resulted in a significant reduction in PGCs when compared to controls. However, the SBE resulted in a more consistent and extensive depletion of PGCs than that observed with the BS treatment. Repopulation of SBE-treated embryos with exogenous PGCs resulted in a threefold increase of PGCs in Stage 27 embryos. Subsequently, germline chimeras were produced by the transfer of male gonadal PGCs from Barred Plymouth Rock embryos into untreated and SBE-treated White Leghorn embryos. Progeny testing of the presumptive chimeras with adult Barred Plymouth Rock chickens was performed to evaluate the efficiency of germline chimera production. The frequency of germline chimerism in SBE-treated recipients increased fivefold when compared to untreated recipients. The number of donor-derived offspring from the germline chimeras also increased eightfold following SBE-treatment of the recipient embryos. These results demonstrated that the administration of a busulfan emulsion into the egg yolk of unincubated eggs improved the depletion of endogenous PGCs in the embryo and enhanced the efficiency of germline chimera production.  相似文献   

14.
Single blastomeres containing the "germ plasm" were isolated from 32-cell embryos of Xenopus albino (ap/ap) or wild type and cultured in vitro until the corresponding normal control embryos reached the neurula stage. The resulting explants from albinos were implanted into wild-type host neurulae and vice versa. The formation of functional gametes, eggs or sperm, of donor type was tested when the operated host embryos had reached sexual maturity. The color of the eggs laid by the experimental females and the presence or absence of melanophores in the epidermis and of pigment granules in the eyes of hatched larvae from matings of the experimental males with albino females made possible the identification of donor-type gametes. Twelve males and 12 females of the wild-type hosts, and 16 males and 14 females of the albino hosts survived. Six animals produced donor-type eggs or sperm, most of them being germ line chimeras. This shows that functional gametes can develop from explants derived from single blastomeres containing the "germ plasm."  相似文献   

15.
Guidance of primordial germ cell migration   总被引:4,自引:0,他引:4  
Primordial germ cells (PGCs), the progenitors of the gametes, migrate from the position where they are specified towards the region where the gonad develops. To reach their target, the PGCs obtain directional cues from cells positioned along their migration path. One such cue, the chemokine SDF-1, has recently been found to be critical for proper PGC migration in zebrafish and in mice. In Drosophila, too, a molecule that is structurally related to chemokine receptors and is important for PGC migration has been identified. The ability to visualize chemokine-guided migration at a high resolution in vivo in these model organisms provides a unique opportunity to study this process, which is relevant for many events in normal development and disease.  相似文献   

16.
Epigenetic reprogramming in mouse primordial germ cells   总被引:29,自引:0,他引:29  
Genome-wide epigenetic reprogramming in mammalian germ cells, zygote and early embryos, plays a crucial role in regulating genome functions at critical stages of development. We show here that mouse primordial germ cells (PGCs) exhibit dynamic changes in epigenetic modifications between days 10.5 and 12.5 post coitum (dpc). First, contrary to previous suggestions, we show that PGCs do indeed acquire genome-wide de novo methylation during early development and migration into the genital ridge. However, following their entry into the genital ridge, there is rapid erasure of DNA methylation of regions within imprinted and non-imprinted loci. For most genes, the erasure commences simultaneously in PGCs in both male and female embryos, which is completed within 1 day of development. Based on the kinetics of this process, we suggest that this is an active demethylation process initiated upon the entry of PGCs into the gonadal anlagen. The timing of reprogramming in PGCs is crucial since it ensures that germ cells of both sexes acquire an equivalent epigenetic state prior to the differentiation of the definitive male and female germ cells in which new parental imprints are established subsequently. Some repetitive elements, however, show incomplete erasure, which may be essential for chromosome stability and for preventing activation of transposons to reduce the risk of germline mutations. Aberrant epigenetic reprogramming in the germ line would cause the inheritance of epimutations that may have consequences for human diseases as suggested by studies on mouse models.  相似文献   

17.
The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells.  相似文献   

18.
During zebrafish development, a gradient of stromal-derived factor 1a (Sdf1a) provides the directional cue that guides the migration of the primordial germ cells (PGCs) to the gonadal tissue. Here we describe a method to produce large numbers of infertile fish by inducing ubiquitous expression of Sdf1a in zebrafish embryos resulting in disruption of the normal PGC migration pattern. A transgenic line of zebrafish, Tg(hsp70:sdf1a-nanos3, EGFP), was generated that expresses Sdf1a under the control of the heat-shock protein 70 (hsp70) promoter and nanos3 3?UTR. To better visualize the PGCs, the Tg(hsp70:sdf1a-nanos3, EGFP) fish were crossed with another transgenic line, Tg(kop:DsRed-nanos3), that expresses DsRed driven by the PGC-specific kop promoter. Heat treatment of the transgenic embryos caused an induction of Sdf1a expression throughout the embryo resulting in the disruption of their normal migration. Optimal embryo survival and disruption of PGC migration was achieved when transgenic embryos at the 4- to 8-cell stage were incubated at 34.5°C for 18 hours. Under these conditions, disruption of PGC migration was observed in 100% of the embryos. Sixty-four adult fish were developed from three separate batches of heat-treated embryos and all were found to be infertile males. When each male was paired with a wild-type female, only unfertilized eggs were produced and histological examination revealed that each of the adult male fish possessed severely under-developed gonads that lacked gametes. The results demonstrate that inducible Sdf1a expression is an efficient and reliable strategy to produce infertile fish. This approach makes it convenient to generate large numbers of infertile adult fish while also providing the capability to maintain a fertile brood stock.  相似文献   

19.
Shiro-uo (ice goby; teleost fish), Leucopsarion petersii, shows a unique cleavage pattern characterized by two tires of blastomeres at 8-cell stage, like that of echinoderm and amphibian embryo. Such a pattern is suitable to isolation and cell lineage experiments. In this study, cell lineage of germ-line was traced by histological observation and cell labelling experiment at the 8-cell stage. Primordial germ cells (PGCs) were first detected histologically at the 10-somite stage, and migrated to gonadal anlage at 10 days post-fertilization, through usual way described in other teleost species. When a single blastomere was labelled with tracer dye at 8-cell stage, both upper and lower tires generated labelled PGCs at gonadal anlage although upper tires occasionally. This result suggests that all blastomeres at the 8-cell stage have potential to produce PGCs in shiro-uo.  相似文献   

20.
Assembly and formation of the gonad primordium are the first steps toward gonad differentiation and subsequent sex differentiation. Primordial germ cells (PGCs) give rise to the gametes that are responsible for the development of a new organism in the next generation. In many organisms, following their specification the germ cells migrate toward the location of the prospective gonadal primordium. To accomplish this, the PGCs obtain directional cues from cells positioned along their migration path. One such cue, the chemokine SDF1 (stromal cell-derived factor 1) and its receptor CXCR4 have recently been found to be critical for proper PGC migration in zebrafish, chick and mouse.We have studied the mechanisms responsible for PGC migration in Medaka. In contrast to the situation observed in zebrafish, where proper PGC positioning is the result of active migration in the direction of the source of SDF1a, Medaka PGC movements are shown to be the consequence of a combination of active SDF1a and SDF1b-guided migration. In this process both SDF1 co-orthologues show only partly overlapping expression pattern and cooperate in the correct positioning of the PGCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号