首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Organisms with sexual and asexual reproductive systems benefit from both types of reproduction. Sexual recombination generates new combinations of alleles, whereas clonality favours the spread of the fittest genotype through the entire population. Therefore, the rate of sexual vs. clonal reproduction has a major influence on the demography and genetic structure of natural populations. We addressed the effect of reproductive system on populations of the dinoflagellate Alexandrium minutum. More specifically, we monitored the spatiotemporal genetic diversity during and between bloom events in two estuaries separated by 150 km for two consecutive years. An analysis of population genetic patterns using microsatellite markers revealed surprisingly high genotypic and genetic diversity. Moreover, there was significant spatial and temporal genetic differentiation during and between bloom events. Our results demonstrate that (i) interannual genetic differentiation can be very high, (ii) estuaries are partially isolated during bloom events and (iii) genetic diversity can change rapidly during a bloom event. This rapid genetic change may reflect selective effects that are nevertheless not strong enough to reduce allelic diversity. Thus, sexual reproduction and/or migration may regularly erase any genetic structure produced within estuaries during a bloom event.  相似文献   

2.
One explanation for the widespread abundance of sexual reproduction is the advantage that genetically diverse sexual lineages have under strong pressure from virulent coevolving parasites. Such parasites are believed to track common asexual host genotypes, resulting in negative frequency‐dependent selection that counterbalances the population growth‐rate advantage of asexuals in comparison with sexuals. In the face of genetically diverse asexual lineages, this advantage of sexual reproduction might be eroded, and instead sexual populations would be replaced by diverse assemblages of clonal lineages. We investigated whether parasite‐mediated selection promotes clonal diversity in 22 natural populations of the freshwater snail Melanoides tuberculata. We found that infection prevalence explains the observed variation in the clonal diversity of M. tuberculata populations, whereas no such relationship was found between infection prevalence and male frequency. Clonal diversity and male frequency were independent of snail population density. Incorporating ecological factors such as presence/absence of fish, habitat geography and habitat type did not improve the predictive power of regression models. Approximately 11% of the clonal snail genotypes were shared among 2–4 populations, creating a web of 17 interconnected populations. Taken together, our study suggests that parasite‐mediated selection coupled with host dispersal ecology promotes clonal diversity. This, in return, may erode the advantage of sexual reproduction in M. tuberculata populations.  相似文献   

3.
Cyclical parthenogens, including aphids, are attractive models for comparing the genetic outcomes of sexual and asexual reproduction, which determine their respective evolutionary advantages. In this study, we examined how reproductive mode shapes genetic structure of sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) populations of the aphid Rhopalosiphum padi by comparing microsatellite and allozyme data sets. Allozymes showed little polymorphism, confirming earlier studies with these markers. In contrast, microsatellite loci were highly polymorphic and showed patterns very discordant from allozyme loci. In particular, microsatellites revealed strong heterozygote excess in asexual populations, whereas allozymes showed heterozygote deficits. Various hypotheses are explored that could account for the conflicting results of these two types of genetic markers. A strong differentiation between reproductive modes was found with both types of markers. Microsatellites indicated that sexual populations have high allelic polymorphism and heterozygote deficits (possibly because of population subdivision, inbreeding or selection). Little geographical differentiation was found among sexual populations confirming the large dispersal ability of this aphid. In contrast, asexual populations showed less allelic polymorphism but high heterozygosity at most loci. Two alternative hypotheses are proposed to explain this heterozygosity excess: allele sequence divergence during long-term asexuality or hybrid origin of asexual lineages. Clonal diversity of asexual lineages of R. padi was substantial suggesting that they could have frozen genetic diversity from the pool of sexual lineages. Several widespread asexual genotypes were found to persist through time, as already seen in other aphid species, a feature seemingly consistent with the general-purpose genotype hypothesis.  相似文献   

4.
Models of coexistence of sexual and asexual lineages in aphids assume that obligate parthenogenetic lineages predominate in areas with mild winter climate because of their high reproductive output, while sexual lineages predominate in areas with severe winter because they produce eggs resistant to frost. To validate this hypothesis in natural conditions, the reproductive mode of populations of the aphid Sitobion avenae was assessed in two very contrasting climatic situations, Romania (severe winter) and Western France (mild winter). To achieve this, reproductive modes were inferred from both (1) the population composition in sexual and asexual forms in autumn, and (2) the genetic structure of Romanian and French populations of S. avenae using microsatellite markers. Romanian populations encompassed a high proportion of sexual forms and were characterised by a very high genotypic diversity and low linkage disequilibrium. In constrast, the French population showed frequent linkage disequilibria, low genetic diversity, and high level of clonal amplification with two asexual genotypes representing over 60% of the sample. In agreement with the model's predictions, these results clearly indicate that sexual reproduction in S. avenae is predominant under the continental climate of Romania, while asexual lineages prevail under the oceanic climate of Western France.  相似文献   

5.
The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single‐nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype (‘1A’) was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.  相似文献   

6.
Hybridization is common among cyclical parthenogens, especially in zooplankton species assemblages of the genus Daphnia. To explore hybridization dynamics and the extent of clonal diversity in the Daphnia longispina complex, we analysed population structure in eight permanent lakes. Based on 15 microsatellite loci, three major taxonomic units emerged: two species, D. galeata and D. longispina and their F1 hybrids, supported by factorial correspondence analysis and two Bayesian methods. At the same time, the detection of backcross classes differed between methods. Mean clonal diversity was lowest in the F1 hybrids, as expected from the high rate of asexual reproduction. Within taxa, replicated genotypes were of clonal origin, but clonal lineages persisted in subsequent years in only one of three resampled lakes. In another lake, the taxon composition changed from being dominated by hybrids to complete dominance by one parental taxon. Such a year‐to‐year taxon replacement has not been reported for the D. longispina complex before. Our data on this hybrid complex illustrate that high‐resolution genotyping is essential for the understanding of ecological and evolutionary outcomes of hybridization in partially clonal taxa.  相似文献   

7.
What advantage do sexually reproducing organisms gain from their mode of reproduction that compensates for their twofold loss in reproductive rate relative to their asexual counterparts? One version of the Red Queen hypothesis suggests that selective pressure from parasites is strongest on the most common genotype in a population, and thus genetically identical clonal lineages are more vulnerable to parasitism over time than genetically diverse sexual lineages. Our surveys of the ectoparasites of an asexual gecko and its two sexual ancestral species show that the sexuals have a higher prevalence, abundance, and mean intensity of mites than asexuals sharing the same habitat. Our experimental data indicate that in one sexual/asexual pair this pattern is at least partly attributable to higher attachment rates of mites to sexuals. Such a difference may occur as a result of exceptionally high susceptibility of the sexuals to mites because of their low genetic diversity (relative to other more-outbred sexual species) and their potentially high stress levels, or as a result of exceptionally low susceptibility of the asexuals to mites because of their high levels of heterozygosity.  相似文献   

8.
Fungal plant pathogens, especially rust fungi (Pucciniales), are well known for their complex life cycles, which include phases of sexual and asexual reproduction. The effect of asexual multiplication on population genetic diversity has been investigated in the poplar rust fungus Melampsora larici‐populina using a nested hierarchical sampling scheme. Four hierarchical levels were considered: leaf, twig, tree and site. Both cultivated and wild poplar stands were sampled at two time points at the start and end of rust epidemics. A total of 641 fungal isolates was analysed using nine microsatellite markers. This study revealed that the genetic signature of asexual multiplication in the wild poplar stand was seen only at lower hierarchical levels (leaf and twig). Moreover, we observed an erosion of clonal structure through time, with an increase in both gene and genotypic diversity. New genotypes contributed to host infection over time, which demonstrates the importance of allo‐infection in the epidemic process in this host‐pathogen system. Compared with the wild stands, the nearly lack of detection of clonal structure in the cultivated stands reflects the higher infection level on cultivated poplars. More generally, this genetic analysis illustrates the utility of population genetics approach for elucidating the proportion of asexual reproduction in the multiplication of isolates during an epidemic, and for proper quantification of asexual dispersal in plant pathogens.  相似文献   

9.
Transitions from sexual to asexual reproduction are often coupled with elevations in ploidy. As a consequence, the importance of ploidy per se for the maintenance and spread of asexual populations is unclear. To examine the effects of ploidy and asexual reproduction as independent determinants of the success of asexual lineages, we sampled diploid sexual, diploid asexual, and triploid asexual Eucypris virens ostracods across a European wide range. Applying nuclear and mitochondrial markers, we found that E. virens consists of genetically highly differentiated diploid sexual populations, to the extent that these sexual clades could be considered as cryptic species. All sexual populations were found in southern Europe and North Africa and we found that both diploid asexual and triploid asexual lineages have originated multiple times from several sexual lineages. Therefore, the asexual lineages show a wide variety of genetic backgrounds and very strong population genetic structure across the wide geographic range. Finally, we found that triploid, but not diploid, asexual clones dominate habitats in northern Europe. The limited distribution of diploid asexual lineages, despite their shared ancestry with triploid asexual lineages, strongly suggests that the wider geographic distribution of triploids is due to elevated ploidy rather than to asexuality.  相似文献   

10.
Determining the spatial genetic structure within and among cold-water coral populations is crucial to understanding population dynamics, assessing the resilience of cold-water coral communities and estimating genetic effects of habitat fragmentation for conservation. The spatial distribution of genetic diversity in natural populations depends on the species’ mode of reproduction, and coral species often have a mixed strategy of sexual and asexual reproduction. We describe the clonal architecture of a cold-water coral reef and the fine-scale population genetic structure (<35 km) of five reef localities in the NE Skagerrak. This study represents the first of this type of analysis from deep waters. We used thirteen microsatellite loci to estimate gene flow and genotypic diversity and to describe the fine-scale spatial distribution of clonal individuals of Lophelia pertusa. Within-population genetic diversity was high in four of the five reef localities. These four reefs constitute a genetic cluster with asymmetric gene flow that indicates metapopulation dynamics. One locality, the Säcken reef, was genetically isolated and depauperate. Asexual reproduction was found to be a highly important mode of reproduction for L. pertusa: 35 genetic individuals were found on the largest reef, with the largest clone covering an area of nearly 300 m2.  相似文献   

11.
Reproductive strategy can play a significant role in invasion success and spread. Asexual and sexual reproduction may confer different advantages and disadvantages to a founding population, resulting in varying impacts on genetic diversity and the ability to invade. We investigate the role of reproductive mode in two species of non-native hydromedusae (Maeotias marginata and Moerisia sp.) in the San Francisco Estuary (SFE). Both species can reproduce asexually and sexually. We employed 7?C8 microsatellite markers to determine overall genetic diversity and to investigate contributions of asexual and sexual reproduction to the populations. We found both species had high levels of genetic diversity (Average HE?=?0.63 and 0.58, Number individuals sampled?=?111 and 277, for M. marginata and Moerisia sp. respectively) but also detected multiple individuals in clonal lineages. We identified the same clones across sampling locations and time, and the index of asexual reproduction (R) was 0.89 for M. marginata and 0.91 for Moerisia sp. Our results suggest both species maintain high population genetic diversity through sexual reproduction, in combination with asexual reproduction, which allows rapid propagation. In addition, we conducted genetic sequence analyses at the ribosomal ITS1 marker, using samples of Moerisia sp. from the SFE and M. lyonsi from Chesapeake Bay. We found 100?% sequence similarity showing that Moerisia sp. in the SFE and Chesapeake Bay are the same species. The two hydromedusae studied here possess the means to propagate rapidly and have high genetic diversity, both of which may allow them to successfully adapt to changing environments and expand their invasions.  相似文献   

12.
Genes of the major histocompatibility complex (MHC) encode molecules that control immune recognition and are highly polymorphic in most vertebrates. The remarkable polymorphisms at MHC loci may be maintained by selection from parasites, sexual selection, or both. If asexual species show equal (or higher) levels of polymorphisms at MHC loci as sexual ones, this would mean that sexual selection is not necessary to explain the high levels of diversity at MHC loci. In this study, we surveyed the MHC diversity of the asexual amazon molly (Poecilia formosa) and one of its sexual ancestors, the sailfin molly (P. latipinna), which lives in the same habitat. We found that the asexual molly has polymorphic MHC loci despite its clonal reproduction, yet not as polymorphic as the sexual species. Although the nucleotide diversity was similar between the asexual and sexual species, the sexual species exhibited a greater genotypic diversity compared to the asexual one from the same habitats. Within‐genome diversity was similar for MHC class I loci, but for class IIB, the sexual species had higher diversity compared to the asexual — despite the hybrid origins and higher levels of heterozygosity at microsatellite loci in the asexual species. The level of positive selection appears to be similar between the two species, which suggests that these polymorphisms are maintained by selection. Thus, our findings do not allow us to rule out the sexual selection hypothesis for the evolution of MHC diversity, and although the sexual fish has higher levels of MHC‐diversity compared to the asexual species, this may be due to differences in demography, parasites, or other factors, rather than sexual selection.  相似文献   

13.
Historically, cosmopolitan phytoplankton species were presumed to represent largely unstructured populations. However, the recent development of molecular tools to examine genetic diversity have revealed differences in phytoplankton taxa across geographic scales and provided insight into the physiology and ecology of blooms. Here we describe the genetic analysis of an extensive bloom of the toxic dinoflagellate Alexandrium fundyense that occurred in the Gulf of Maine in 2005. This bloom was notable for its intensity and duration, covering hundreds of kilometers and persisting for almost two months. Genotypic analyses based on microsatellite marker data indicate that the open waters of the northeastern U.S. harbor a single regional population of A. fundyense comprising two genetically distinct sub-populations. These subpopulations were characteristic of early- and late-bloom samples and were derived from the northern and southern areas of the bloom, respectively. The temporal changes observed during this study provide clear evidence of succession during a continuous bloom and show that selection can act on the timescale of weeks to significantly alter the representation of genotypes within a population. The effects of selection on population composition and turnover would be magnified if sexual reproduction were likewise influenced by environmental conditions. We hypothesize that the combined effects of differential growth and reproduction rates serves to reduce gene flow between the sub-populations, reinforcing population structure while maintaining the diversity of the overall regional population.  相似文献   

14.
Using the magnetic particles method, we isolated six polymorphic microsatellite loci from the pea aphid, Acyrthosiphon pisum (Harris), which feeds on a wide range of legume species. The isolated loci were polymorphic, with three to six alleles in 40 aphids. Expected heterozygosities ranged from 0.12 to 0.65. These loci can be used to quantify clonal diversity and compare genetic population structure between sexual and asexual populations.  相似文献   

15.
Unmated workers of the Cape honeybee Apis mellifera capensis can produce female offspring including daughter queens. As worker-laid queens are produced asexually, we wondered whether these asexually produced individuals reproduce asexually or sexually. We sampled 11 colonies headed by queens known to be the clonal offspring of workers and genotyped 23 worker offspring from each queen at 5 microsatellite loci. Without exception, asexually produced queens produced female worker offspring sexually. In addition, we report the replacement of a queen by her asexually produced granddaughter, with this asexually produced queen also producing offspring sexually. Hence, once a female larva is raised as a queen, mating and sexual reproduction appears to be obligatory in this subspecies, despite the fact that worker-laid queens are derived from asexual lineages.  相似文献   

16.
Cercospora leaf spot caused by Cercospora beticola is a significant threat to the production of sugar and table beet worldwide. A de novo genome assembly of C. beticola was used to develop eight polymorphic and reproducible microsatellite markers for population genetic analyses. These markers were used, along with five previously described microsatellite loci to genotype two C. beticola populations from table beet fields in New York, USA. High allelic and genotypic diversity and low population differentiation were found between fields. Linkage disequilibrium of loci after clone-correction of datasets was attributed to the presence of two distinct clonal lineages within the populations. Linkage equilibrium of loci in one of the clusters supported the presence of sexual reproduction. The draft de novo genome assembly will help elucidate the reproductive system of C. beticola through investigating evidence of recombination in the C. beticola genome.  相似文献   

17.
Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.  相似文献   

18.
Clonal propagation is an important life history trait for many sessile organisms, and often leads to the formation of monoclonal aggregations. In the marine environment, sea anemones have been model species for testing theory regarding the evolution of sex and understanding the contribution of sexual versus asexual reproduction to the population structure in facultatively clonal animals. However, little attention has been paid to tropical actiniarians. The corkscrew anemone Bartholomea annulata is common in tropical marine habitats in the western Atlantic and Caribbean; it forms small aggregations (2–4 anemones) on coral reefs and larger aggregations (>10 anemones) in mangrove habitats. We used field surveys and molecular analyses to investigate patterns of distribution, abundance, and genetic structure of aggregations formed by B. annulata on a reef in the US Virgin Islands and in a unique mangrove habitat in the Florida Keys. Abundance was greatest at the abandoned rock quarry mangrove habitat in the Florida Keys, where anemones formed continuously distributed aggregations carpeting the exposed limestone walls. Genetic diversity assessed via intersimple sequence repeats (ISSRs) and six microsatellite loci revealed that asexual reproduction plays only a minor role in the formation of both small and large anemone aggregations. Specifically, ISSR analyses showed that only ~10% of anemone aggregations were clonal in the US Virgin Islands, while microsatellite genotyping identified clonality in only 1 of 35 aggregations. In the Florida Keys, only four clonal genotypes were recovered within aggregations, but eight clones, representing 33% of the total surveyed population, had individuals in multiple aggregations. Thus, population structure of B. annulata appears to rely primarily on sexual reproduction, although asexual reproduction may play a nontrivial role in some environments. Mechanisms that drive the formation of genotypically diverse aggregations remain unknown, but may include attraction toward conspecifics, shared use of preferred habitats, or the local retention of larvae in partially enclosed habitats.  相似文献   

19.
Somatic mutations are an underappreciated source of genetic variation within multi-cellular organisms. The resulting genetic mosaicism should be particularly abundant in large clones of vegetatively propagating angiosperms. Little is known on the abundance and ecological correlates of genetic mosaicism in field populations, despite its potential evolutionary significance. Because sexual reproduction restores genetic homogeneity, we predicted that in facultatively clonally reproducing organisms, the prevalence of genetic mosaicism increases with increasing clonality. This was tested among 33 coastal locations colonized by the ecologically important marine angiosperm Zostera marina, ranging from Portugal to Finland. Genetic mosaics were detectable as complex microsatellite genotypes at two hypervariable loci that revealed additional mosaic alleles, suggesting the presence of one or more divergent cell lineages within the same ramet. The proportions of non-mosaic genotypes in a population sharply decreased below a clonal richness of 0.2. Accordingly, more genetic mosaics were found at the southern and northern limit of the distribution of Z. marina in Europe where sexual reproduction is rare or absent. The genetic mosaics observed at neutral microsatellite markers suggest the possibility of within-clone variation at selectively relevant loci and supports the notion that members of clones are seldom genetically identical.  相似文献   

20.
Refugia are expected to preserve genetic variation of relict taxa, especially in polyploids, because high gene dosages could prevent genetic erosion in small isolated populations. However, other attributes linked to polyploidy, such as asexual reproduction, may strongly limit the levels of genetic variability in relict populations. Here, ploidy levels and patterns of genetic variation at nuclear microsatellite loci were analysed in Prunus lusitanica, a polyploid species with clonal reproduction that is considered a paradigmatic example of a Tertiary relict. Sampling in this study considered a total of 20 populations of three subspecies: mainland lusitanica (Iberian Peninsula and Morocco), and island azorica (Azores) and hixa (Canary Islands and Madeira). Flow cytometry results supported an octoploid genome for lusitanica and hixa, whereas a 16‐ploid level was inferred for azorica. Fixed heterozygosity of a few allele variants at most microsatellite loci resulted in levels of allelic diversity much lower than those expected for a high‐order polyploid. Islands as a whole did not contain higher levels of genetic variation (allelic or genotypic) than mainland refuges, but island populations displayed more private alleles and higher genotypic diversity in old volcanic areas. Patterns of microsatellite variation were compatible with the occurrence of clonal individuals in all but two island populations, and the incidence of clonality within populations negatively correlated with the estimated timing of colonization. Our results also suggest that gene flow has been very rare among populations, and thus population growth following founder events was apparently mediated by clonality rather than seed recruitment, especially in mainland areas. This study extends to clonal taxa the idea of oceanic islands as important refugia for biodiversity, since the conditions for generation and maintenance of clonal diversity (i.e. occasional events of sexual reproduction, mutation and/or seed immigration) appear to have been more frequent in these enclaves than in mainland areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号