首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a homeostatic enzyme that paradoxically contributes to disturbances in spatial memory acquisition after traumatic brain injury (TBI) in transgenic mice, thought to be related to depletion of its substrate nicotinamide adenine dinucleotide (NAD+). In this study, systemic administration of the PARP-1 inhibitor 5-iodo-6-amino-1,2-benzopyrone (INH2BP) after TBI preserved brain NAD+ levels and dose-dependently reduced poly-ADP-ribosylation 24 h after injury. While moderate-dose INH2BP improved spatial memory acquisition after TBI; strikingly, both injured- and sham-mice receiving high-dose INH2BP were unable to learn in the Morris-water maze. Poly-ADP-ribosylated peptides identified using a proteomics approach yielded several proteins potentially associated with memory, including structural proteins (tubulin alpha and beta, gamma-actin, and alpha-internexin neuronal intermediate filament protein) and 14-3-3gamma. Nuclear poly-ADP-ribosylation of 14-3-3gamma was completely inhibited by the dose of INH2BP that produced profound memory disturbances. Thus, partial inhibition of poly-ADP-ribosylation preserves NAD+ and improves functional outcome after TBI, whereas more complete inhibition impairs spatial memory acquisition independent of injury, and is associated with ribosylation of 14-3-3gamma.  相似文献   

2.
3.
Poly(ADP-ribose) polymerase-1 (PARP-1), the most abundant member of the PARP family, is a nuclear enzyme that catalyzes ADP-ribose transfer from NAD+ to specific acceptor proteins in response to DNA damage. Excessive PARP-1 activation is an important cause of infarction and contractile dysfunction in heart tissue during interruptions of blood flow. The mechanisms by which PARP-1 inhibition and disruption dramatically improve metabolic recovery and reduce oxidative stress during cardiac reperfusion have not been fully explored. We developed a mouse heart experimental protocol to test the hypothesis that mitochondrial respiratory complex I is a downstream mediator of beneficial effects of PARP-1 inhibition or disruption. Pharmacological inhibition of PARP-1 activity produced no deterioration of hemodynamic function in C57BL/6 mouse hearts. Hearts from PARP-1 knockout mice also exhibited normal baseline contractility. Prolonged ischemia-reperfusion produced a selective defect in complex I function distal to the NADH dehydrogenase component. PARP-1 inhibition and PARP-1 gene disruption conferred equivalent protection against mitochondrial complex I injury and were strongly associated with improvement in myocardial energetics, contractility, and tissue viability. Interestingly, ischemic preconditioning abolished cardioprotection stimulated by PARP-1 gene disruption. Treatment with the antioxidant N-(2-mercaptopropionyl)-glycine or xanthine oxidase inhibitor allopurinol restored the function of preconditioned PARP-1 knockout hearts. This investigation establishes a strong association between PARP-1 hyperactivity and mitochondrial complex I dysfunction in cardiac myocytes. Our findings advance understanding of metabolic regulation in myocardium and identify potential therapeutic targets for prevention and treatment of ischemic heart disease.  相似文献   

4.
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that is involved in DNA repair and activated by DNA damage. When activated, PARP-1 consumes NAD(+) to form ADP-ribose polymers on acceptor proteins. Extensive activation of PARP-1 leads to glycolytic blockade, energy failure, and cell death. These events have been postulated to result from NAD(+) depletion. Here, we used primary astrocyte cultures to directly test this proposal, utilizing the endogenous expression of connexin-43 hemichannels by astrocytes to manipulate intracellular NAD(+) concentrations. Activation of PARP-1 with the DNA alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) produced NAD(+) depletion, glycolytic blockade, and cell death. Cultures incubated in high (10mM) extracellular concentrations of NAD(+) after MNNG exposure showed normalization of intracellular NAD(+) concentrations. Repletion of intracellular NAD(+) in this manner completely restored glycolytic capacity and prevented cell death. These results suggest that NAD(+) depletion is the cause of glycolytic failure after PARP-1 activation.  相似文献   

5.
Poly(ADP-ribose) polymerase-1 (PARP-1) mediates neuronal cell death in a variety of pathological conditions involving severe DNA damage. Poly(ADP-ribose) (PAR) polymer is a product synthesized by PARP-1. Previous studies suggest that PAR polymer heralds mitochondrial apoptosis-inducing factor (AIF) release and thereby, signals neuronal cell death. However, the details of the effects of PAR polymer on mitochondria remain to be elucidated. Here we report the effects of PAR polymer on mitochondria in cells in situ and isolated brain mitochondria in vitro. We found that PAR polymer causes depolarization of mitochondrial membrane potential and opening of the mitochondrial permeability transition pore early after injury. Furthermore, PAR polymer specifically induces AIF release, but not cytochrome c from isolated brain mitochondria. These data suggest PAR polymer as an endogenous mitochondrial toxin and will further our understanding of the PARP-1-dependent neuronal cell death paradigm.  相似文献   

6.
7.
Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in DNA repair, but its overactivation can induce cell death. Our aim was to investigate the role of PARP-1 in activation of programmed cell death processes in the brain during systemic inflammation.

Our data indicated that lipopolysaccharide (1 mg/kg b.w., i.p.)-evoked systemic inflammation enhanced PARP-1 activity in the mouse brain, leading to the lowering of β-NAD+ concentration, to translocation of apoptosis inducing factor from mitochondria to the nucleus, and to enhanced lipid peroxidation. Inhibitor of PARP-1, 3-aminobenzamide (30 mg/kg b.w., i.p.), protected the brain against prooxidative and cell death processes, suggesting involvement of PARP-1 in systemic inflammation-related processes in the brain.  相似文献   


8.
9.
10.
11.
12.
Poly(ADP-ribose) polymerase-1 (PARP-1) is activated in response to DNA injury in eukaryotic cells and has been implicated in cell dysfunction in reperfusion injury. In this study we investigated the role of PARP-1 on apoptosis in early myocardial reperfusion injury. Mice genetically deficient of PARP-1 (PARP-1-/-) and wild-type littermates were subjected to myocardial ischemia and reperfusion. Myocardial injury was assessed by measuring the serum levels of creatine phosphokinase and oligonucleosomal DNA fragments in the infarcted area. Expression of the anti-apoptotic protein, Bcl-2, and the pro-apoptotic protein, Bax, was analyzed by Western blot. Activation of caspases, important executioners of apoptosis, and activation of the nuclear factor kappa B (NF-kappa B) pathway were evaluated. Gene expression profiles for apoptotic regulators between PARP-1-/- and wild-type mice also were compared. Myocardial damage in PARP-1-/- mice was reduced significantly, as indicated by lower serum creatine phosphokinase levels and reduction of apoptosis, as compared with wild-type mice. Western blot analyses showed increased expression of Bcl-2, which was associated with reduction of caspase-1 and caspase-3 activation. This cardioprotection was associated with significant reduction of the activation of I kappa B kinase complex and NF-kappa B DNA binding. Microarray analysis demonstrated that the expression of 29 known genes of apoptotic regulators was significantly altered in PARP-1-/- mice compared with wild-type mice, whereas 6 known genes were similarly expressed in both genotypes. The data indicate that during reperfusion absence of PARP-1 leads to reduction of myocardial apoptosis, which is associated with reduced NF-kappa B activation and altered gene expression profiles.  相似文献   

13.
Kun E  Kirsten E  Hakam A  Bauer PI  Mendeleyev J 《FEBS letters》2008,582(18):2709-2713
The H-bonded complex of ATP with Arg 34 of Zn2+ finger I of poly-ADP-ribose polymerase-1 (PARP-1) determines trans-oligo-ADP-ribosylation from NAD+ to proteins other than PARP-1. This mechanism was tested in lysolecithin fractions of non-malignant and cancer cells separately and after their recombination. Cellular PARP-1 activity was recovered when the centrifugal sediment was recombined with the supernatant fraction containing cellular ADP-ribose oligomer acceptor proteins. Combination of the matrix fraction (Mx) of cancer cells (lacking OXPHOS) with its supernatant had the same PARP-1 activity as the Mx alone. The supernatant of non-malignant cells was replaced by glycolytic enzymes as ADP-ribose acceptor. The hexokinase activity of the supernatant increased when OXPHOS of intact cells was uncoupled by carbonyl cyanide 4-(trifluoro methoxy) phenylhydrazone. trans-ADP-ribosylation was demonstrated by polyacrylamide gel electrophoresis.  相似文献   

14.
15.
Poly(ADP-ribose) polymerase-1 (PARP-1) safeguards genomic integrity by limiting sister chromatid exchanges. Overstimulation of PARP-1 by extensive DNA damage, however, can result in cell death, as prolonged PARP-1 activation depletes NAD(+), a substrate, and elevates nicotinamide, a product. The decline of NAD(+) and the rise of nicotinamide may downregulate the activity of Sir2, the NAD(+)-dependent deacetylases, because deacetylation by Sir2 is dependent on high concentration of NAD(+) and inhibited by physiologic level of nicotinamide. The Sir2 deacetylase family has been implicated in mediating gene silencing, longevity and genome stability. It is conceivable that poly(ADP-ribosyl)ation by PARP-1, which is induced by DNA damage, could modulate protein deacetylation by Sir2 via the NAD(+)/nicotinamide connection. The possible linkage of the two ancient pathways that mediate broad biological activities may spell profound evolutionary roles for the conserved PARP-1 and Sir2 gene families in multicellular eukaryotes.  相似文献   

16.
17.
Poly(ADP-ribose) polymerase-1 (PARP-1), a eucaryotic nuclear DNA-binding protein that is activated by breaks in DNA chains, may be involved in the base excision repair (BER) because DNAs containing single-stranded gaps and breaks are intermediates of BER. The effect of PARP-1 on the DNA synthesis catalyzed in vitro by DNA polymerase beta (pol beta) was studied using analogs of DNA substrates produced during BER and imitating intermediates of the short patch and long patch subpathways of BER. Oligonucleotide duplexes of 34 bp that contained a mononucleotide gap or a single-strand break with tetrahydrofuran phosphate or phosphate at the 5;-end of the downstream oligonucleotide were taken as DNA substrates. The efficiency of DNA synthesis was determined at various ratios of pol beta and PARP-1. The efficiency of gap filling was decreased in the presence of PARP-1, but strand-displacement DNA synthesis was inhibited significantly stronger, which seemed to be due to competition between PARP-1 and pol beta for DNA. In the presence of NAD+ and single-strand breaks in DNA, PARP-1 catalyzes the synthesis of poly(ADP-ribose) covalently attached to the enzyme, and this automodification is thought to provide for dissociation of PARP-1 from DNA. The effect of PARP-1 automodification on inhibition of DNA synthesis was studied, and efficiency of mononucleotide gap filling was shown to be restored, but strand-displacement synthesis did not revert to the level observed in the absence of PARP-1. PARP-1 is suggested to regulate the interaction between pol beta and DNA, in particular, via its own automodification.  相似文献   

18.
Oxidative DNA damage, as occurs during exacerbations in chronic obstructive pulmonary disease (COPD), highly activates the nuclear enzyme poly(ADP-ribose)polymerase-1 (PARP-1). This can lead to cellular depletion of its substrate NAD+, resulting in an energy crisis and ultimately in cell death. Inhibition of PARP-1 results in preservation of the intracellular NAD+ pool, and of NAD+-dependent cellular processes. In this study, PARP-1 activation by hydrogen peroxide decreased intracellular NAD+ levels in human pulmonary epithelial cells, which was found to be prevented in a dose-dependent manner by theophylline, a widely used compound in the treatment of COPD. This enzyme inhibition by theophylline was confirmed in an ELISA using purified human PARP-1 and was found to be competitive by nature. These findings provide new mechanistic insights into the therapeutic effect of theophylline in oxidative stress-induced lung pathologies.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号