首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well known that endothelial cells (EC) are highly sensitive to mechanical influences such as hemodynamic conditions or pulsatile stretch. However, it is still unknown, how endothelium responds to the changed gravity. The results of some studies suggest that cellular elements of vascular wall and, particularly, endothelium, may directly participate in development of physiological responces to microgravity. On our suggestion, this is extremely attractive since vascular endothelium is one of the main regulators of vascular tone (via its interaction with vascular smooth muscle cells) and, consequently, can play not last role in maintaining of normal cardiovascular system operation in microgravity. On the other hand, the endothelium itself may be regarded as a widely dispersed organ of approximately 1.5 kg in weight (in the adult human organism). Finally, endothelium is not just a passive barrier between vascular wall and circulating blood but synthesizes, metabolizes, and releases a substances which act on adjacent cell systems or distant cell structures. The main aims of this study were: 1) the development of experimental model, allowing to study functional parameters of human endothelial cells in hypogravity conditions in vitro; 2) the verification of endothelial sensitivity to gravitational micro-environment.  相似文献   

2.
Using histochemical staining and FACS-analysis we have studied the basal and TNF-alpha induced expression of E-selectin, ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (ECs) exposed to simulated hypogravity. Control ECs did not contain detectable amounts of E-selectin or VCAM-1 but were ICAM-1 positive. As soon as after 6-8 hrs of clinorotation at 5 RPM the cellular content of ICAM- 1 increased. Moreover, hypogravity potentiated the effect of inflammatory cytokines (TNF-alpha and IL-1) on ICAM-1 expression. No increase in E-selectin or VCAM-1 expression was observed in ECs exposed to hypogravity itself. However, hypogravity reduced E-selectin and VCAM-1 expression in cell cultures activated by cytokines, more visible at their low (5-10 U/ml) concentrations. Both, control and clinorotated ECs poorly supported spontaneous lymphocyte adhesion; the adhesion of PMA-activated leukocytes was 15-20-fold higher. The interaction of unstimulated lymphocytes with cytokine-activated endothelium was more noticeable but significantly lower in cultures exposed to hypogravity. Activated blood cells interacted with endothelium more effectively, particularly, under hypogravity. Obtained results suggest that EC adhesion molecule expression and endothelium-lymphocyte interaction are altered under simulated hypogravity conditions in direction of increase of endotlielial adhesiveness for activated blood cells.  相似文献   

3.
Because endothelial cells are fundamental to the maintenance of the functional integrity of the vascular wall, endothelial modifications in altered gravity conditions might offer some insights into the mechanisms leading to circulatory impairment in astronauts. We cultured human endothelial cells in a dedicated centrifuge (MidiCAR) to generate hypergravity and in two different devices, namely the Rotating Wall Vessel and the Random Positioning Machine, to generate hypogravity. Hypogravity stimulated endothelial growth, did not affect migration, and enhanced nitric oxide production. It also remodeled the actin cytoskeleton and reduced the total amounts of actin. Hypergravity did not affect endothelial growth, markedly stimulated migration, and enhanced nitric oxide synthesis. In addition, hypergravity altered the distribution of actin fibers without, however, affecting the total amounts of actin. A short exposure to hypergravity (8 min) abolished the hypogravity induced growth advantage. Our results indicate that cytoskeletal alterations and increased nitric oxide production represent common denominators in endothelial responses to both hypogravity and hypergravity.  相似文献   

4.
The exposure of the human body to microgravity, conditions that occurs during space flights, causes significant changes in the cardiovascular system. Many cell types have been involved in these changes, and the endothelium seems to play a major role. In endothelial cells (EC), it has been shown that modeled low gravity impairs nitric oxide synthesis, cell adhesion, extracellular matrix composition, cytoskeleton organization, cytokines, and growth factors secretion. Nevertheless, detailed analysis of EC physiological changes induced by microgravity exposure is still lacking. Secretome analysis is one of the most promising approaches for the identification of biomarkers directly related to the physiopathological cellular state. In this study, we analyzed in details the modifications of EC secretome by using umbilical vein endothelial (HUVE) cells exposed to modeled low gravity conditions. By adopting a two‐dimensional (2‐D) proteomic approach, in conjunction with a technique for the compression of the dynamic range of proteins, we observed that modeled low gravity exposure of HUVE cells affected the secretion of proteins involved in the regulation of cytoskeleton assembly. Moreover, by using Luminex® suspension array systems, we found that the low gravity condition decreased in ECs the secretion of some key pro‐inflammatory cytokines, including IL‐1α and IL‐8, and of the pro‐angiogenic factor bFGF. On the contrary, microgravity increase the secretion of two chemokines (Rantes and Eotaxin), involved in leukocytes recruitment. J. Cell. Biochem. 112: 265–272, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
It is generally known that bone loss is one of the most important complications for astronauts who are exposed to long-term microgravity in space. Changes in blood flow, systemic hormones, and locally produced factors were indicated as important elements contributing to the response of osteoblastic cells to loading, but research in this field still has many questions. Here, the possible biological involvement of thyroid C cells is being investigated. The paper is a comparison between a case of a wild type single mouse and a over-expressing pleiotrophin single mouse exposed to hypogravity conditions during the first animal experiment of long stay in International Space Station (91 days) and three similar mice exposed to hypergravity (2Gs) conditions. We provide evidence that both microgravity and hypergravity induce similar loss of C cells with reduction of calcitonin production. Pleiotrophin over-expression result in some protection against negative effects of gravity change. Potential implication of the gravity mechanic forces in the regulation of bone homeostasis via thyroid equilibrium is discussed.  相似文献   

6.
EPCs (endothelial progenitor cells) regenerate the vascular endothelial cells and keep the integrity of the vascular endothelium and thus may retard the onset of atherosclerosis. Steady state levels of EPCs in the circulation were found to be correlated with cardiovascular event risks. Given the close relationship between insulin and the cardiovascular system, we tested the long-term effects of moderate-dose insulin treatment on bone marrow-derived EPCs. Rat bone marrow EPCs were exposed to various levels of insulin under normal (5 mmol/l) or high (40 mmol/l) glucose conditions for 7 days. Insulin at levels near the physiological range (0.1, 1 nmol/l) up-regulated EPCs proliferation, stimulated NO (nitric oxide) production and reduced EPC senescence and ROS (reactive oxygen species) generation under both normal- and high-glucose conditions. Glucose exerted deleterious effects on EPCs contrary to insulin. Western blot analysis suggested concomitant decrease of Akt phosphorylation and eNOS (endothelial nitric oxide synthase) expression by high-glucose treatment and increase with insulin administration. Thus, insulin promoted several activities of EPCs, which suggested a potential endothelial protective role of insulin. Akt/eNOS pathway may be involved in the modulation of EPCs function by glucose and insulin.  相似文献   

7.
Vascular endothelial cells cultured in the presence of fibroblast growth factor (FGF) adopt at confluence a morphological appearance similar to that of the vascular endothelium in vivo. Similarly, their apical cell surface is, as in vivo, nonthrombogenic. In contrast, when the cultures are maintained in the absence of FGF, the cells undergo within two to three passages structural and functional alterations that are incompatible with their in vivo morphological appearance and physiological function. Cultures maintained in the absence of FGF no longer adopt, upon reaching confluence, the configuration of a monolayer composed of small closely apposed and nonoverlapping, cuboidal cells. Instead, confluent cultures deprived of FGF consist of large, overlapping cells which have lost the polarity of cell surface characteristic of the vascular endothelium. The apical cell surface becomes thrombogenic, as reflected by its ability to bind platelets, whereas fibronectin, which at confluence is normally associated only with the basal cell surface, can be found both on top of and underneath the cell layer. Among other changes, both sparse and confluent cultures maintained in the absence of FGF showed a greatly increased production of fibronectin. CSP-60, a cell surface protein whose appearance is correlative with the adoption of a cell monolayer configuration, can no longer be detected in cultures maintained in the absence of FGF. Overlapping endothelial cells maintained in the absence of FGF can also no longer function as a protective barrier against the uptake of ligands such as low density lipoprotein. Exposure of the culture to FGF induces a restoration of the normal endothelial characteristics concomitant with the adoption of a flattened cell monolayer morphology. These results demonstrate that, in addition to being a mitogen. FGF is involved in controlling the differentiation and phenotypic expression of the vascular endothelium. This is reflected by its effect on the morphological appearance, polarity of cell surfaces, platelet binding capacity, and barrier function of the vascular endothelium.  相似文献   

8.
The vascular endothelium lining the luminal surface of all blood vessels is constantly exposed to shear stress exerted by the flowing blood. Blood flow with high laminar shear stress confers protection by activation of antiatherogenic, antithrombotic and anti-inflammatory proteins, whereas low or oscillatory shear stress may promote endothelial dysfunction, thereby contributing to cardiovascular disease. Despite the usefulness of proteomic techniques in medical research, however, there are relatively few reports on proteome analysis of cultured vascular endothelial cells employing conditions that mimic in vivo shear stress attributes. This review focuses on the proteome studies that have utilized cultured endothelial cells to identify molecular mediators of shear stress and the roles they play in the regulation of endothelial function, and their ensuing effect on vascular function in general. It provides an overview on current strategies in shear stress-related proteomics and the key proteins mediating its effects which have been characterized so far.  相似文献   

9.
10.
MRL/1pr mice demonstrate anatomic specificity in their development of vasculitis including the small- and medium-sized muscular arteries of the mesentery. To define the functional role of endothelium in vasculitis, we have cloned endothelial cells derived from inflamed small- and medium-sized arteries. Primary cells were derived by enzymatic dispersement and endothelial cells were selected by utilizing a combination of specific culture conditions. Cloned endothelium were developed utilizing limiting dilution cultures supplemented by endothelial cell growth factor. The cloned endothelial cells express many structural features of mature endothelial cells including Factor VIII-RA, non-muscle-specific actin, and Weibel-Palade bodies. Functionally, the clones express functional receptors for the scavenger pathway for LDL metabolism. The cells do not express Class I MHC antigens; however, IFN-beta and IFN-gamma stimulate Class I MHC expression after 24 h, which induces lysis of virus-infected cloned endothelium by Class I-restricted virus-primed T cells. In direct contrast to site-identical vascular smooth muscle cells (VSMCs), endothelial cells do not spontaneously express Class II MHC antigens, nor do they secrete biologically relevant levels of IL-1 unless triggered by lipopolysaccharide. The availability of site-specific cloned endothelium along with cloned VSMCs from autoimmune mice should resolve major experimental controversies involving the pathophysiology of inflammatory vascular disease.  相似文献   

11.
The response of the vascular endothelium to wall shear stress plays a central role in the development and progression of atherosclerosis. Current studies have investigated endothelial response using idealized in vitro flow chambers. Such cell culture models are unable to accurately replicate the complex in vivo wall shear stress patterns arising from anatomical geometries. To better understand this implication, we have created both simplified/tubular and anatomically realistic in vitro endothelial flow models of the human right coronary artery. A post-mortem vascular cast of the human left ventricular outflow tract was used to create geometrically accurate silicone elastomer models. Straight, tubular models were created using a custom made mold. Following the culture of human abdominal aortic endothelial cells within the inner lumen, cells were exposed to steady flow (Re = 233) for varying time periods. The resulting cell morphology was analyzed in terms of shape index and angle of orientation relative to the flow direction. In both models a progressive elongation and alignment of the endothelium in the flow direction was observed following 8, 12, and 24 hours. This change, however, was significantly less pronounced in the anatomical model (as observed from morphological variations indicative of localized flow features). Differences were also observed between the inner and outer walls at the disease-prone proximal region. Since morphological adaptation is a visual indication of endothelial shear stress activation, the use of anatomical models in endothelial genetic and biochemical studies may offer better insight into the disease process.  相似文献   

12.
A Kamiya  J Ando  M Shibata  H Masuda 《Biorheology》1988,25(1-2):271-278
The effects of fluid shear stress on the function and structure of the vascular system are outlined, based on the findings obtained in our laboratory or of our colleagues. First, it is pointed out that the adaptive response of the vascular wall to flow changes which we observed in the canine carotid artery shunted with the jugular vein altering the internal diameter to keep the wall shear stress constant, can attain the optimum vascular branching structure as predicted in the minimum work model by Murray. Electronmicroscopic studies of similarly shunted arteries revealing various morphological changes in the endothelial cells have suggested that the shear stress initially affects the endothelium. The in vitro experiments using cultured endothelial cells as well have exhibited that the mitotic activity of the cells significantly increases by applying fluid shear stress. From these findings, it is concluded that the adaptive response of the endothelium to the fluid shear stress is an inherent and key process locally regulating the vascular system to be in the most functional state.  相似文献   

13.
A variety of evidence suggest that cardiovascular system functions are impaired in altered gravity conditions. In this study we investigated the influence of hypergravity environment (3g) on endothelial cell proliferation, endothelial vasoactive compound production and on in vitro angiogenesis. We found that cultured primary human endothelial cells were very sensitive to mild hypergravity conditions. Even if we did not record changes in cell viability and apoptosis, we found significant differences in cell proliferation, prostacyclin (PGI2) synthesis, nitric oxide (NO) synthesis, and in angiogenic responses. Using western blotting technique we detected an increased expression of cycloxygenase-2 (COX-2) in primary endothelial cells exposed for 48 hours to hypergravity, in comparison to those exposed to normal gravity.  相似文献   

14.
The vascular endothelium expresses differential receptors depending on the functional state and tissue localization of its cells. A method to characterize this receptor heterogeneity with phage display random peptide libraries has been developed. Using this technology, several peptide ligands have been isolated that home to tissue-specific endothelial cell receptors following intravenous administration. Such peptide ligands, or antibodies directed against specific vascular receptors, can be used to target therapeutic compounds or imaging agents to endothelial cells in vitro and in vivo. Recent advances in the field include identification of novel endothelial receptors expressed differentially in normal and pathological conditions and the isolation of peptides or antibody ligands to such receptors in in vitro assays, in animal models and in a human patient. These milestones, which extend the 'functional map' of the vasculature, should lead to clinical applications in diseases such as cancer and other conditions that exhibit distinct vascular characteristics.  相似文献   

15.
OBJECTIVE: Inwardly-rectifying K(+) (Kir) channels are responsible for maintaining membrane potentials in a variety of cell types including endothelial cells where they modulate endothelium-dependent vasorelaxation. The goal of this study is to determine the functional expression of Kir channels in porcine bone marrow-derived side population (BM-SP) cells that demonstrate phenotypes of endothelial progenitor cells (EPCs). We further asses the hypercholesterolemia sensitivity of Kir channels in BM-SP cells, which may play a key role in hypercholesterolemia-mediated regulation of EPCs. METHODS: To assess the effect of hypercholesterolemia on Kir channels in BM-SP, Kir currents were recorded in SP cells sorted from the bone marrow of healthy or hypercholesterolemic animals. RESULTS: We found Kir channels constitute the major conductance in porcine bone marrow-derived side population (BM-SP) cells. These cells are defined by their efficiency of Hoechst dye efflux and have been reported to differentiate into multiple cell lineages including endothelium in vivo. We demonstrate here that porcine BM-SP cells differentiate to an endothelial lineage (CD31(+), vWF(+)) supporting the hypothesis that these cells are endothelial progenitor cells. Also, BM-SP cells express Kir with biophysical properties recapitulating those in mature endothelial cells, but with a much higher current density. Flow cytometric (FACS) analysis indicated that the number of SP cells was unaffected by hypercholesterolemia. However, hypercholesterolemia significantly inhibited Kir channels in BM-SP cells. CONCLUSIONS: We successfully demonstrate that BM side population cells represent an origin of endothelial progenitor cells. This study further shows, for the fist time, that the functional expression of Kir channels in bone marrow (BM)-derived SP. Moreover, we demonstrate that hypercholesterolemia condition significantly suppresses the Kir channels in BM-SP cells, suggesting that hypercholesterolemia-mediated regulation of Kir channels may be an important factor not only in dysfunction of mature endothelium but also in dysfunction of BM-SP cells.  相似文献   

16.
Efforts to determine a link between diabetes and atherosclerosis have involved examining the effect of high glucose levels on the adhesion and migration of circulating leukocytes, mostly monocytes and T lymphocytes. Leukocyte differentiation and proliferation within the subendothelial space can also be investigated by the use of a 3D in vitro human vascular tissue model. This model was used to study the effect of short-term, high glucose concentration on certain cell behavior associated with the early stages of atherosclerosis. Samples were exposed to either a 30- or 5.6-mM glucose concentration for 9 h to represent either hyperglycemic or normoglycemic conditions, respectively. There was a significant increase in vascular cell adhesion molecule-1 expression on the endothelial cells exposed to a 30-mM compared to a 5.6-mM glucose concentration. There was no significant difference in either intercellular adhesion molecule-1 or E-selectin expression on the endothelial cells exposed to a 30-mM compared to a 5.6-mM glucose concentration. After the endothelium was exposed to 30 mM glucose concentration, there was a 70% increase in the number of monocytes (CD14+) migrating across the endothelium and a 28% increase in the number of these monocytes differentiating into macrophages, compared to cell migration and differentiation across the endothelium exposed to 5.6 mM glucose concentration. Also, for the endothelium exposed to 30 mM glucose concentration, there were nearly 2.5 times more T lymphocytes that migrated across the endothelium, along with significant cell proliferation, compared to cell migration across the endothelium exposed to 5.6 mM glucose concentration.  相似文献   

17.
Summary The morphological relationship between the osteoclasts at the endosteal surface of two-week-old rabbit femurs and the endothelium of vascular channels of the bone marrow was examined. Light microscopy revealed that 85% of the osteoclasts make direct contact with the endothelial cells. The ultrastructure of this osteoclast-endothelium interface shows that the osteoclast has specialized processes which reach out towards the endothelial cells coming into close proximity with them. On rare occasions, specialized junctions between these processes and the endothelial cells are noted.Study supported by the joint research fund of the Hebrew University-Hadassah School of Dental Medicine founded by the Alpha-Omega Fraternity and the Hadassah Medical OrganizationI would like to thank Mr. Milo Sadownick for his excellent technical assistance  相似文献   

18.
Objectives:  Neovascularization represents a major challenge in tissue engineering applications since implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of implanted cells. An attractive therapeutic approach to overcome this is based on co-implantation of endothelial cells to create vascular networks. We have investigated the potential of human endothelial progenitor cells (EPC) to form functional blood vessels in vivo in direct comparison to vascular-derived endothelial cells, represented by human umbilical vein endothelial cells (HUVEC).
Materials and methods:  EPCs were isolated from human peripheral blood, expanded in vitro and analysed in vitro for phenotypical and functional parameters. In vivo vasculogenic potential of EPCs and HUVECs was evaluated in a xenograft model where spheroidal endothelial aggregates were implanted subcutaneously into immunodeficient mice.
Results:  EPCs were indistinguishable from HUVECs in terms of expression of classical endothelial markers CD31, von Willebrand factor, VE-cadherin and vascular endothelial growth factor-R2, and in their ability to endocytose acetylated low-density lipoprotein. Moreover, EPCs and HUVECs displayed almost identical angiogenic potential in vitro , as assessed by in vitro Matrigel sprouting assay. However in vivo , a striking and unexpected difference between EPCs and HUVECs was detected. Whereas implanted HUVEC spheroids gave rise to formation of a stable network of perfused microvessels, implanted EPC spheroids showed significantly impaired ability to form vascular structures under identical experimental conditions.
Conclusion:  Our results indicate that vascular-derived endothelial cells, such as HUVECs are superior to EPCs in terms of promoting in vivo vascularization of engineered tissues.  相似文献   

19.
Markers of endothelium have been studied in a new endothelial cell line derived from human umbilical cord vein cells by microinjection of a recombinant gene that includes a deletion mutant of the human vimentin gene regulatory region controlling the large T and small t antigen coding region of the SV40 virus. In culture, this immortalized venous endothelial cell line (IVEC) demonstrated morphological characteristics of endothelium; uptake of acetylated low density lipoprotein and presence of the Factor VIII-related antigen. Treatment of IVEC cells with Interleukin-1β (IL-1 β) at 10 U.ml?1 activates the expression of cell adhesion molecules such as endothelial leucocyte adhesion molecule (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1), as observed in primary culture. Prostacyclin secretion was induced in the IVEC cells by 100 nM PMA treatment and thrombin at 0.5 U/ml. Angiotensin converting enzyme (ACE) activity detected in IVEC cells was present but lower than ACE activity in primary endothelial cells and was completely blocked by enalaprilat (1 μM), a specific ACE inhibitor. The presence of ACE mRNA was also demonstrated in IVEC cells by RT-PCR amplification. Our data demonstrate that endothelial cells immortalized by use of this recombinant gene retain the morphological organization and numerous differentiated properties of endothelium. © 1993 Wiley-Liss, Inc.  相似文献   

20.
Endothelial cells express two different classical cadherins, vascular endothelial (VE) cadherin and neural (N) cadherin, having distinct functions in the vascular system. VE-cadherin is specific to endothelial adherens junctions and is strictly necessary for vascular morphogenesis. On the contrary, N-cadherin shows diffuse localization on the cell surface and interacts with mural cells for vessel stabilization. In this study, we sought to clarify the cellular mechanisms leading to the distinct cellular locations and functions of the two cadherins in the endothelium. VE-cadherin has been shown to be responsible for the junctional exclusion of N-cadherin. Using several endothelial models, we demonstrate that this property is dependent on VE-cadherin binding to p120 catenin (p120ctn). Moreover, although in the absence of VE-cadherin N-cadherin can localize to cell contacts, angiogenesis remains impaired, demonstrating that endothelial junction formation is not sufficient for normal vessel development. Interestingly, we show that VE-cadherin, but not N-cadherin, is partially associated with cholesterol-enriched microdomains. Lipid raft-associated-VE-cadherin is characterized by a very high level of p120ctn association, and this association is necessary for VE-cadherin recruitment into lipid rafts. Altogether, our results indicate a critical role for p120ctn in regulating the membrane distribution of endothelial cadherins with functional consequences in terms of cadherin stabilization and intracellular signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号