首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
The equilibrium binding of influenza virus hemagglutinin to derivatives of its cell-surface ligand, sialic acid, was measured by nuclear magnetic resonance (NMR) spectroscopy. Binding was quantified by observing perturbations of sialic acid resonances in the presence of protein. The major perturbation observed was a chemical shift of the N-acetyl methyl resonance, presumably due to the proximity of the methyl group to tryptophan 153. X-31 hemagglutinin binds to the methyl alpha-glycoside of sialic acid with a dissociation constant of 2.8 mM and does not bind to the methyl beta-glycoside. Replacing the 4-hydroxyl group of sialic acid with an acetyl group has little effect, while replacing the 7-hydroxyl group with an acetyl prevents binding. Experiments with sialylated oligosaccharides confirm literature reports that mutations at amino acid 226 change the specificity of hemagglutinin for alpha(2,6) and alpha(2,3) glycosidic linkages. The NMR line broadening of sialyloligosaccharides suggests that sialic acid is the only component that contacts the protein. Saccharides containing two sialic acid residues appear to have two separate binding modes. Hemagglutinin that has undergone a low pH induced conformational change retains the ability to bind sialic acid.  相似文献   

2.
Nuclear magnetic resonance spectroscopy demonstrates that the rhesus rotavirus hemagglutinin specifically binds alpha-anomeric N-acetylneuraminic acid with a K(d) of 1.2 mM. The hemagglutinin requires no additional carbohydrate moieties for binding, does not distinguish 3' from 6' sialyllactose, and has approximately tenfold lower affinity for N-glycolylneuraminic than for N-acetylneuraminic acid. The broad specificity and low affinity of sialic acid binding by the rotavirus hemagglutinin are consistent with this interaction mediating initial cell attachment prior to the interactions that determine host range and cell type specificity.  相似文献   

3.
Seeds from the legume tree Maackia amurensis contain two lectins that can agglutinate different blood cell types. Their specificity toward sialylated oligosaccharides is unique among legume lectins; the leukoagglutinin preferentially binds to sialyllactosamine (alphaNeuAc(2-3)betaGal(1-4)betaGlcNAc), whereas the hemagglutinin displays higher affinity for a disialylated tetrasaccharide (alphaNeuAc(2-3)betaGal(1-3)[alphaNeuAc(2-6)]alphaG alNAc). The three-dimensional structure of the complex between M. amurensis leukoagglutinin and sialyllactose has been determined at 2.75-A resolution using x-ray crystallography. The carbohydrate binding site consists of a deep cleft that accommodates the three carbohydrate residues of the sialyllactose. The central galactose sits in the primary binding site in an orientation that has not been observed previously in other legume lectins. The carboxyl group of sialic acid establishes a salt bridge with a lysine side chain. The glucose residue is very efficiently docked between two tyrosine aromatic rings. The complex between M. amurensis hemagglutinin and a disialylated tetrasaccharide could be modeled from the leukoagglutinin/sialyllactose crystal structure. The substitution of one tyrosine by an alanine residue is responsible for the difference in fine specificity between the two isolectins. Comparison with other legume lectins indicates that oligosaccharide specificity within this family is achieved by the recycling of structural loops in different combinations.  相似文献   

4.
Sperm binding activity has been detected in zona pellucida (ZP) glycoproteins and it is generally accepted that this activity resides in the carbohydrate moieties. In the present study we aim to identify some of the specific carbohydrate molecules involved in the bovine sperm-ZP interaction. We performed sperm binding competition assays, in vitro fecundation (IVF) in combination with different lectins, antibodies and neuraminidase digestion, and chemical and cytochemical analysis of the bovine ZP. Both MAA lectin recognising alpha-2,3-linked sialic acid and neuraminidase from Salmonella typhimurium with catalytic activity for alpha-2,3-linked sialic acid, demonstrated a high inhibitory effect on the sperm-ZP binding and oocyte penetration. These results suggest that bovine sperm-ZP binding is mediated by alpha-2,3-linked sialic acid. Experiments with trisaccharides (sialyllactose, 3'-sialyllactosamine and 6'-sialyllactosamine) and glycoproteins (fetuin and asialofetuin) corroborated this and suggest that at least the sequence Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc is involved in the sperm-ZP interaction. Moreover, these results indicate the presence of a sperm plasma membrane specific protein for the sialic acid. Chemical analysis revealed that bovine ZP glycoproteins contain mainly Neu5Ac (84.5%) and Neu5GC (15.5%). These two types of sialic acid residues are probably linked to Galbeta1,4GlcNAc and GalNAc by alpha-2,3- and alpha-2,6-linkages, respectively, as demonstrated by lectin cytochemical analysis. The use of a neuraminidase inhibitor resulted in an increased number of spermatozoa bound to the ZP and penetrating the oocyte. From this last result we hypothesize that a neuraminidase from cortical granules would probably participate in the block to polyspermy by removing sialic acid from the ZP.  相似文献   

5.
The Siglec family of receptors mediates cell-surface interactions through recognition of sialylated glycoconjugates. Previously reported structures of the N-terminal domain of the Siglec sialoadhesin (SnD1) in complex with various sialic acid analogs revealed the structural template for sialic acid binding. To characterize further the carbohydrate-binding properties, we have determined the crystal structures of SnD1 in the absence of ligand, and in complex with 2-benzyl-Neu5NPro and 2-benzyl-Neu5NAc. These structures reveal that SnD1 undergoes very few structural changes on ligand binding and detail how two novel classes of sialic acid analogs bind, one of which unexpectedly can induce Siglec dimerization. In conjunction with in silico analysis, this set of structures informs us about the design of putative ligands with enhanced binding affinities and specificities to different Siglecs, and provides data with which to test the effectiveness of different computational drug design protocols.  相似文献   

6.
Many serotype 3 reoviruses bind to two different host cell molecules, sialic acid and an unidentified protein, using discrete receptor-binding domains in viral attachment protein, final sigma1. To determine mechanisms by which these receptor-binding events cooperate to mediate cell attachment, we generated isogenic reovirus strains that differ in the capacity to bind sialic acid. Strain SA+, but not SA-, bound specifically to sialic acid on a biosensor chip with nanomolar avidity. SA+ displayed 5-fold higher avidity for HeLa cells when compared with SA-, although both strains recognized the same proteinaceous receptor. Increased avidity of SA+ binding was mediated by increased k(on). Neuraminidase treatment to remove cell-surface sialic acid decreased the k(on) of SA+ to that of SA-. Increased k(on) of SA+ enhanced an infectious attachment process, since SA+ was 50-100-fold more efficient than SA- at infecting HeLa cells in a kinetic fluorescent focus assay. Sialic acid binding was operant early during SA+ attachment, since the capacity of soluble sialyllactose to inhibit infection decreased rapidly during the first 20 min of adsorption. These results indicate that reovirus binding to sialic acid enhances virus infection through adhesion of virus to the cell surface where access to a proteinaceous receptor is thermodynamically favored.  相似文献   

7.
Abstract

Influenza epidemics and pandemics are caused by influenza A virus. The cell surface protein of hemagglutinin and neuraminidase is responsible for viral infection and release of progeny virus on the host cell membrane. Now 18 hemagglutinin and 11 neuraminidase subtypes are identified. The avian influenza virus of H5N1 is an emergent threat to public health issues. To control the influenza viral infection it is necessary to develop antiviral inhibitors and vaccination. In the present investigation we carried out 50 ns Molecular Dynamics simulation on H5 hemagglutinin of Influenza A virus H5N1 complexed with fluorinated sialic acid by substituting fluorine atoms at any two hydroxyls of sialic acid by considering combinatorial combination. The binding affinity between the protein–ligand complex system is investigated by calculating pair interaction energy and MM-PBSA binding free energy. All the complex structures are stabilized by hydrogen bonding interactions between the H5 protein and the ligand fluorinated sialic acid. It is concluded from all the analyses that the fluorinated complexes enhance the inhibiting potency against H5 hemagglutinin and the order of inhibiting potency is SIA-F9 ? SIA-F2 ≈ SIA-F7 ≈ SIA-F2F4 ≈ SIA-F2F9 ≈ SIA-F7F9 > SIA-F7F8 ≈ SIA-F2F8 ≈ SIA-F8F9 > SIA-F4 ≈ SIA-F4F7 ≈ SIA-F4F8 ≈ SIA-F8 ≈ SIA-F2F7 ≈ SIA > SIA-F4F9. This study suggests that one can design the inhibitor by using the mono fluorinated models SIA-F9, SIA-F2 and SIA-F7 and difluorinated models SIA-F2F4, SIA-F2F9 and SIA-F7F9 to inhibit H5 of H5N1 to avoid Influenza A viral infection.

Communicated by Ramaswamy H. Sarma  相似文献   

8.
The syntheses and agonist and binding activities of 5(S)-hydroxy- 6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (12-deoxy LTB4), 5(S), 12(S)-dihydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (12-epi LTB4), 12(R)-hydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5-deoxy LTB4), 5(R), 12(S)-dihydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5-epi LTB4), 6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5, 12-deoxy LTB4) are described. These leukotriene B4 analogs were all able to aggregate rat leukocytes and compete with [3H]-leukotriene B4 for binding to rat and human leukocyte leukotriene B4 receptors with varying efficacy. The analog in which the 12-hydroxyl group was removed was severely reduced both in agonist action (aggregation) and binding. The epimeric 12-hydroxyl analog demonstrated better agonist and binding properties than the analog without a hydroxyl at this position. In contrast, in the case of the 5-hydroxyl the epimeric hydroxyl analog had greatly reduced agonist and binding activities while the 5-deoxy analog demonstrated potency only several fold less than leukotriene B4 itself. The dideoxy leukotriene B4 analog was more than a thousand fold less active than leukotriene B4 as an agonist and in binding to the leukotriene B4 receptor. These results show that binding to the leukocyte leukotriene B4 receptor requires a hydroxyl group at the 12 position in either stereochemical orientation but that the presence of a hydroxyl at the 5 position is less important. However, the epimeric C5 leukotriene B4 analog clearly interacts unfavourably with the binding site of the leukotriene B4 receptor.  相似文献   

9.
The hydrolysis of the model compound 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl-alpha-d-neuraminic acid and neuraminidase (Vibrio cholerae) closely resembled that of the O-acetylated sialic acid residues of rabbit Tamm-Horsfall glycoprotein. This confirmed that O-acetylation was responsible for the unusually slow rate of acid hydrolysis of O-acetylated sialic acid residues observed in rabbit Tamm-Horsfall glycoprotein and their resistance to hydrolysis by neuraminidase. The first-order rate constant of hydrolysis of 2-methyl-N-acetyl-alpha-d-neuraminic acid by 0.05m-H(2)SO(4) was 56-fold greater than that of 2-O-methyl-4,7,8,9-tetra-O-acetyl-N-acetyl -alpha-d-neuraminic acid. Kinetic studies have shown that in the pH range 1.00-3.30, the observed rate of hydrolysis of 2-methyl-N-acetyl-alpha-d-neuraminic acid can be attributed to acid-catalysed hydrolysis of the negatively charged CO(2) (-) form of the methyl ketoside.  相似文献   

10.
The supplementation of the sialic acid biosynthetic pathway with exogenously supplied N-acetylmannosamine (ManNAc) analogs has many potential biomedical and biotechnological applications. In this work, we explore the structure-activity relationship of Man-NAc analogs on cell viability and metabolic flux into the sialic acid biosynthetic pathway to gain a better understanding of the fundamental biology underlying "glycosylation engineering" technology. A panel of ManNAc analogs bearing various modifications on the hydroxyl groups as well as substitutions at the N-acyl position was investigated. Increasing the carbon chain length of ester derivatives attached to the hydroxyl groups increased the metabolic efficiency of sialic acid production, whereas similar modification to the N-acyl group decreased efficiency. In both cases, increases in chain length decreased cell viability; DNA ladder formation, Annexin V-FITC two-dimensional flow cytometry assays, caspase-3 activation, and down-regulation of sialoglycoconjugate-processing enzymes established that the observed growth inhibition and toxicity resulted from apoptosis. Two of the panel of 12 analogs tested, specifically Ac(4)ManNLev and Ac(4) ManNHomoLev, were highly toxic. Interestingly, both of these analogs maintained a ketone functionality in the same position relative to the core monosaccharide structure, and both also inhibited flux through the sialic acid pathway (the remainder of the less toxic analogs either increased or had no measurable impact on flux). These results provide fundamental insights into the role of sialic acid metabolism in apoptosis by demonstrating that ManNAc analogs can modulate apoptosis both indirectly via hydroxylgroup effects and directly through N-acyl-group effects.  相似文献   

11.
A meningococcal group B-specific horse antiserum contains at least two distinct populations of antibodies with specificities for determinants on the group B capsular polysaccharide antigen. These two populations were differentiated on the basis of the ability of only one of them to be absorbed from the antiserum by the structurally related colominic acid. The nature of the colominic acid-specific determinant was elucidated by a radioimmunoassay inhibition technique with the use of a series of linear alpha-(2----8)-linked oligomers of sialic acid as inhibitors. Colominic acid was labeled by prior removal of its N-acetyl groups, followed by their replacement with the use of [3H]acetic anhydride. The conformational nature of the determinant was proposed because of the unusually large size (10 sialic acid residues) of the oligomer required to function as an efficient inhibitor. The structure of the determinant responsible for the second population of group B-specific antibodies has not been determined, but it is obviously based on an as yet undefined conformational or structural feature peculiar to the group B meningococcal polysaccharide. In contrast to the colominic acid-specific group B determinant, the determinant responsible for the group C polysaccharide-specific rabbit antibodies proved to be more conventional. Inhibitory properties of the alpha-(2----9)-linked oligomers maximized with those containing four or five sialic acid residues, which is consistent with the approximate estimated maximal size of an antibody site.  相似文献   

12.
Cell attachment and membrane penetration are functions of the rotavirus outer capsid spike protein, VP4. An activating tryptic cleavage of VP4 produces the N-terminal fragment, VP8*, which is the viral hemagglutinin and an important target of neutralizing antibodies. We have determined, by X-ray crystallography, the atomic structure of the VP8* core bound to sialic acid and, by NMR spectroscopy, the structure of the unliganded VP8* core. The domain has the beta-sandwich fold of the galectins, a family of sugar binding proteins. The surface corresponding to the galectin carbohydrate binding site is blocked, and rotavirus VP8* instead binds sialic acid in a shallow groove between its two beta-sheets. There appears to be a small induced fit on binding. The residues that contact sialic acid are conserved in sialic acid-dependent rotavirus strains. Neutralization escape mutations are widely distributed over the VP8* surface and cluster in four epitopes. From the fit of the VP8* core into the virion spikes, we propose that VP4 arose from the insertion of a host carbohydrate binding domain into a viral membrane interaction protein.  相似文献   

13.
Nandi T 《Bioinformation》2008,2(6):240-244
Human infection with avian influenza H5N1 is an emerging infectious disease characterized by respiratory symptoms and a high fatality rate. Hemagglutinin and neuraminidase are the two surface proteins responsible for infection by influenza virus. Till date, neuraminidase has been the major target for antiviral drugs. In the present study we chose hemagglutinin protein as it mediates the binding of the virus to target cells through sialic acid residues on the host cell-surface. Hemagglutinin of H5 avian influenza (PDB ID: 1JSN) was used as the receptor protein. Ligands were generated by structure-based de novo approach and virtual screening of ZINC database. A total of 11,104 conformers were generated and docked into the receptor binding site using 'High Throughput Virtual Screening'. We proposed potential lead molecules against the receptor binding site of hemagglutinin based on the results obtained from in silico docking and hydrogen bond interaction between the ligand and the 1JSN protein molecule. We found sialic acid derivative 1 to be the lead molecules amongst the ligands generated by structure based de novo approach. However the molecules obtained from ZINC database were showing better docking scores as well as conserved hydrogen bond interactions. Thus we proposed ZINC00487720 and ZINC00046810 as potential lead molecules that could be used as an inhibitor to the receptor binding site of hemagglutinin. They could now be studied in vivo to validate the in silico results.  相似文献   

14.
In a one step procedure, L-1-O-benzyl-2-O-methyl-chiro-inositol (1) was acetalized to the L-muco-inositol derivatives 2, 3 and D-2-O-benzyl-3-O-cyclohexylcarbamoyl-4-deoxy-4-(N,N'-dicyclohexylureido)-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (4). Complete conversion of L-1-O-benzyl-6-O-cyclohexylcarbamoyl-3-O-formyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (3) into L-1-O-benzyl-6-O-cyclohexylcarbamoyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (2) is feasible by deformylation in boiling methanolic triethylamine. Furthermore, stepwise deprotection of 2 and 4 is described. Thus, compounds 5, 10, and 7 were obtained by decarbamoylation of 2, 4, and 6, respectively, with boiling methanolic sodium methoxide. The trichloroethylidene group of L-1-O-benzyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (5) was removed in a two step procedure (hydrodechlorination-deacetalization) via the ethylidene acetal 7 to give L-1-O-benzyl-2-O-methyl-muco-inositol (9). On refluxing D-chiro-inositol derivative 4 with 99% acetic acid, the ureido moiety was cleaved generating D-2-O-benzyl-4-cyclohexylamino-3-O-cyclohexylcarbamoyl-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (11). By contrast, cleavage of the ureido moiety of 10 was relatively difficult. The corresponding D-2-O-benzyl-4-cyclohexylamino-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (12) was only formed in small amounts. The structures of 1, 3 and 10 were confirmed by X-ray analysis.  相似文献   

15.
Several classes of substrate analogs of dihydroxy-acid dehydratase have been tested as inhibitors of this enzyme in an attempt to characterize its binding site and find what modifications in substrate structure lead to an affinity higher than that of the natural substrates. The substrate analogs were tested on dihydroxy-acid dehydratase from both spinach and Escherichia coli. One modification of the substrate that led to as much as a 1000-fold increase in binding affinity was replacement of the 3-hydroxyl group with a thiol. It has been shown previously that the 3-hydroxyl group of the substrate becomes a ligand for one Fe of the Fe-S clusters of these enzymes on binding to their active sites. It seems likely then that the tighter binding of the thiol containing analogs is due to the thiol group becoming a ligand to an iron of the Fe-S clusters of these enzymes. A second modification in substrate that led to as much as 1000-fold increase in binding affinity was the addition of a large lipophilic group. This suggests there is a large hydrophobic pocket or hydrophobic surface near the active site of dihydroxy-acid dehydratase. A modification in substrate that led to as much as a 50-fold increase in binding was the replacement of the carboxyl group of the substrate with phosphonate; however, this increase was limited to substrate analogs without a polar functionality on the carbon β to the phosphonate group. Bromopyruvate was found to irreversibly inactivate dihydroxy-acid dehydratase. Each good inhibitor we found was active on spinach dihydroxy-acid dehydratase and E. coli dihydroxy-acid dehydratase to a similar extent suggesting the active sites of the enzymes from these two organisms are similar. Some of the better inhibitors described in this report have mild herbicidal activity.  相似文献   

16.
We describe the characterization of influenza A virus infection of an established in vitro model of human pseudostratified mucociliary airway epithelium (HAE). Sialic acid receptors for both human and avian viruses, alpha-2,6- and alpha-2,3-linked sialic acids, respectively, were detected on the HAE cell surface, and their distribution accurately reflected that in human tracheobronchial tissue. Nonciliated cells present a higher proportion of alpha-2,6-linked sialic acid, while ciliated cells possess both sialic acid linkages. Although we found that human influenza viruses infected both ciliated and nonciliated cell types in the first round of infection, recent human H3N2 viruses infected a higher proportion of nonciliated cells in HAE than a 1968 pandemic-era human virus, which infected proportionally more ciliated cells. In contrast, avian influenza viruses exclusively infected ciliated cells. Although a broad-range neuraminidase abolished infection of HAE by human parainfluenza virus type 3, this treatment did not significantly affect infection by influenza viruses. All human viruses replicated efficiently in HAE, leading to accumulation of nascent virus released from the apical surface between 6 and 24 h postinfection with a low multiplicity of infection. Avian influenza A viruses also infected HAE, but spread was limited compared to that of human viruses. The nonciliated cell tropism of recent human H3N2 viruses reflects a preference for the sialic acid linkages displayed on these cell types and suggests a drift in the receptor binding phenotype of the H3 hemagglutinin protein as it evolves in humans away from its avian virus precursor.  相似文献   

17.
Quantum mechanical fragment molecular orbital calculations have been performed for receptor binding of the hemagglutinin protein of the recently pandemic influenza 2009 H1N1, A/swine/Iowa/1930, and A/Puerto Rico/8/1934 viruses to α2-6 linked sialyloligosaccharides, as analogs of human receptors. The strongest receptor binding affinity was observed for the 2009/H1N1pdm. The inter-fragment interaction energy analysis revealed that the amino acid mutation of 2009/H1N1pdm, Ser145Lys, was a major cause of such strong binding affinity. Strong ionic pair interaction between the sialic acid and Lys145 was observed only in the 2009/H1N1pdm, in addition to the hydrogen bond between the sialic acid and Gln226 observed in all the HAs. Therefore, pandemic 2009/H1N1pdm has been found to recognize the α2-6 receptor much stronger than the 1930-swine and 1934-human.  相似文献   

18.
The purification, composition and specificity of wheat-germ agglutinin   总被引:50,自引:9,他引:41       下载免费PDF全文
1. The purification of wheat-germ agglutinin from commercial wheat germ is described. By ion-exchange chromatography three active proteins (isolectins) were separated, one of which was examined in detail. 2. The amino acid composition is unusual, as 20% of residues are half-cystine and 21% are glycine. Unlike most lectins and contrary to previous reports, this protein is not a glycoprotein. 3. The efficiency of various saccharides as inhibitors of the agglutination reaction was investigated and from this the specificity of the binding site was inferred. Of monosaccharides, only derivatives of glucose with a 2-acetamido group and a free 3-hydroxyl group are effective inhibitors, and glycosides of either anomeric configuration are bound. Oligosaccharides are much more powerful inhibitors of agglutination than are monosaccharides. 4. It is proposed that the binding site consists of three or four subsites with differing specificities, in a cleft in the molecule resembling that proposed for hen's-egg-white lysozyme.  相似文献   

19.
Escherichia coli Bos-12 synthesizes a heteropolymer of sialic acids with alternating alpha-2,9/alpha-2,8 glycosidic linkages (1). In this study, we have shown that the polysialyltransferase of the E. coli Bos-12 recognizes an alpha-2,8 glycosidic linkage of sialic acid at the nonreducing end of an exogenous acceptor of either the alpha-2,8 homopolymer of sialic acid or the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid and catalyzes the transfer of Neu5Ac from CMP-Neu5Ac to this residue. When the exogenous acceptor is an alpha-2,8-linked oligomer of sialic acid, the main product synthesized is derived from the addition of a single residue of [14C]Neu5Ac to form either an alpha-2,8 glycosidic linkage or an alpha-2,9 glycosidic linkage at the nonreducing end, at an alpha-2, 8/alpha-2,9 ratio of approximately 2:1. When the acceptor is the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid, chain elongation takes place four to five times more efficiently than the alpha-2,8-linked homopolymer of sialic acid as an acceptor. It was found that the alpha-2,9-linked homopolymer of sialic acid and the alpha-2,8/alpha-2,9-linked hetero-oligomer of sialic acid with alpha-2,9 at the nonreducing end not only failed to serve as an acceptor for the E. coli Bos-12 polysialyltransferase for the transfer of [14C]Neu5Ac, but they inhibited the de novo synthesis of polysialic acid catalyzed by this enzyme. The results obtained in this study favor the proposal that the biosynthesis of the alpha-2, 9/alpha-2,8 heteropolymer of sialic acid catalyzed by the E. coli Bos-12 polysialyltransferase involves a successive transfer of a preformed alpha-2,8-linked dimer of sialic acid at the nonreducing terminus of the acceptor to form an alpha-2,9 glycosidic linkage between the incoming dimer and the acceptor. The glycosidic linkage at the nonreducing end of the alternating alpha-2,9/alpha-2,8 heteropolymer of sialic acid produced by E. coli Bos-12 should be an alpha-2,8 glycosidic bond and not an alpha-2,9 glycosidic linkage.  相似文献   

20.
Ligand recognition by influenza virus. The binding of bivalent sialosides.   总被引:4,自引:0,他引:4  
Infection by influenza virus is initiated by a cellular adhesion event that is mediated by the viral protein, hemagglutinin, which is exposed on the surface of the virion. Hemagglutinin recognizes and binds to cell surface sialic acid residues. Although each individual ligand binding interaction is weak, the high affinity of influenza virus for cells that bear sialic acid residues is thought to result from a multivalent attachment process involving many similar recognition events. To evaluate such binding we have synthesized three series of compounds, each containing two sialic acid residues separated by spacers of different length, and have tested them as ligands for influenza hemagglutinin. No increased binding to the bromelain-released hemagglutinin ectodomain was seen for any of the bivalent compounds as determined by 1H NMR titration. In contrast, however, a spacer length between sialic acid residues of approximately 55 A sharply increases the binding of these bidentate species to whole virus as determined by hemagglutination inhibition assays. The most effective compound containing glycines in the linking chain displayed 100-fold increased affinity for whole virus over the paradigm monovalent ligand, Neu5Ac alpha 2Me.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号