首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Glutamine synthetase I (GSI) enzyme activity in Streptomyces coelicolor is controlled post-translationally by the adenylyltransferase (GlnE) as in enteric bacteria. Although other homologues of the Escherichia coli Ntr system (glnK, coding for a PII family protein; and glnD, coding for an uridylyltransferase) are found in the S. coelicolor genome, the regulation of the GSI activity was found to be different. The functions of glnK and glnD were analysed by specific mutants. Surprisingly, biochemical assay and two-dimensional PAGE analysis showed that modification of GSI by GlnE occurs normally in all mutant strains, and neither GlnK nor GlnD are required for the regulation of GlnE in response to nitrogen stimuli. Analysis of the post-translational regulation of GlnK in vivo by two-dimensional PAGE and mass spectrometry indicated that it is subject to both a reversible and a non-reversible modification in a direct response to nitrogen availability. The irreversible modification was identified as removal of the first three N-terminal amino acid residues of the protein, and the reversible modification as adenylylation of the conserved tyro-sine 51 residue that is known to be uridylylated in E. coli. The glnD insertion mutant expressing only the N-terminal half of GlnD was capable of adenylylating GlnK, but was unable to perform the reverse deadenylylation reaction in response to excess ammonium. The glnD null mutant completely lacked the ability to adenylylate GlnK. This work provides the first example of a PII protein that is modified by adenylylation, and demonstrates that this reaction is performed by a homologue of GlnD, previously described only as a uridylyltransferase enzyme.  相似文献   

6.
Haloferax mediterranei is an extreme halophilic micro-organism belonging to the Archaea domain that was isolated from the Santa Pola solar salterns (Alicante, Spain) in 1983. The biochemistry of the proteins involved in nitrogen metabolism is being studied, but the knowledge of their regulation is very scarce at present. The PII superfamily is constituted by major regulators of nitrogen metabolism, which are widespread in prokaryotic and eukaryotic organisms. These trimeric proteins (12?kDa per subunit) have in Escherichia coli long been known to regulate GS (glutamine synthetase) activity via its adenylyltransferase/adenylyl-removing enzyme and, more recently, to be able to interact directly with this enzyme in methanogenic archaea. We have tested the possible role of PII proteins in the regulation of ammonium assimilation in our model organism and the results clearly indicate that the direct influence of GS by PII proteins can also take place in halophilic archaea, starting with the comprehension of nitrogen regulation in those organisms.  相似文献   

7.
GlnD is a bifunctional uridylyltransferase/uridylyl-removing enzyme that has a central role in the general nitrogen regulatory system NTR. In enterobacteria, GlnD uridylylates the PII proteins GlnB and GlnK under low levels of fixed nitrogen or ammonium. Under high ammonium levels, GlnD removes UMP from these proteins (deuridylylation). The PII proteins are signal transduction elements that integrate the signals of nitrogen, carbon and energy, and transduce this information to proteins involved in nitrogen metabolism. In Herbaspirillum seropedicae, an endophytic diazotroph isolated from grasses, several genes coding for proteins involved in nitrogen metabolism have been identified and cloned, including glnB, glnK and glnD. In this work, the GlnB, GlnK and GlnD proteins of H. seropedicae were overexpressed in their native forms, purified and used to reconstitute the uridylylation system in vitro. The results show that H. seropedicae GlnD uridylylates GlnB and GlnK trimers producing the forms PII (UMP)(1), PII (UMP)(2) and PII (UMP)(3), in a reaction that requires 2-oxoglutarate and ATP, and is inhibited by glutamine. The quantification of these PII forms indicates that GlnB was more efficiently uridylylated than GlnK in the system used.  相似文献   

8.
9.
10.
The nitrogen metabolism of Proteobacteria is controlled by the general Ntr system in response to nitrogen quality and availability. The PII proteins play an important role in this system by modulating the cellular metabolism through physical interaction with protein partners. Herbaspirillum seropedicae, a nitrogen-fixing bacterium, has two PII proteins paralogues, GlnB and GlnK. The interaction of H. seropedicae PII proteins with its targets is regulated by allosteric ligands and by reversible post-translational uridylylation. Both uridylylation and deuridylylation reactions are catalyzed by the same bifunctional enzyme, GlnD. The mechanism of regulation of GlnD activity is still not fully understood. Here, we characterized the regulation of deuridylylation activity of H. seropedicae GlnD in vitro. To this purpose, fully modified PII proteins were submitted to kinetics analysis of its deuridylylation catalyzed by purified GlnD. The deuridylylation activity was strongly stimulated by glutamine and repressed by 2-oxoglutarate and this repression was strong enough to overcome the glutamine stimulus of enzymatic activity. We also constructed and analyzed a truncated version of GlnD, lacking the C-terminal regulatory ACT domains. The GlnDΔACT protein catalyzed the futile cycle of uridylylation and deuridylylation of PII, regardless of glutamine and 2-oxoglutarate levels. The results presented here suggest that GlnD can sense the glutamine:2-oxoglutarate ratio and confirm that the ACT domains of GlnD are the protein sensors of environment clues of nitrogen availability.  相似文献   

11.
We have cloned and characterized three distinct Rhizobium meliloti loci involved in glutamine biosynthesis (glnA, glnII, and glnT). The glnA locus shares DNA homology with the glnA gene of Klebsiella pneumoniae, encodes a 55,000-dalton monomer subunit of the heat-stable glutamine synthetase (GS) protein (GSI), and complemented an Escherichia coli glnA mutation. The glnII locus shares DNA homology with the glnII gene of Bradyrhizobium japonicum and encodes a 36,000-dalton monomer subunit of the heat-labile GS protein (GSII). The glnT locus shares no DNA homology with either the glnA or glnII gene and complemented a glnA E. coli strain. The glnT locus codes for an operon encoding polypeptides of 57,000, 48,000, 35,000, 29,000, and 28,000 daltons. glnA and glnII insertion mutants were glutamine prototrophs, lacked the respective GS form (GSI or GSII), grew normally on different nitrogen sources (Asm+), and induced normal, nitrogen-fixing nodules on Medicago sativa plants (Nod+ Fix+). A glnA glnII double mutant was a glutamine auxotroph (Gln-), lacked both GSI and GSII forms, but nevertheless induced normal Fix+ nodules. glnT insertion mutants were prototrophs, contained both GSI and GSII forms, grew normally on different N sources, and induced normal Fix+ nodules. glnII and glnT, but not glnA, expression in R. meliloti was regulated by the nitrogen-regulatory genes ntrA and ntrC and was repressed by rich N sources such as ammonium and glutamine.  相似文献   

12.
13.
The glutamine synthetase (GS)-glutamate synthase pathway is the primary route used by members of the family Rhizobiaceae to assimilate ammonia. Two forms of glutamine synthetase, GSI and GSII, are found in Rhizobium and Bradyrhizobium species. These are encoded by the glnA and glnII genes, respectively. Starting with a Rhizobium meliloti glnA mutant as the parent strain, we isolated mutants unable to grow on minimal medium with ammonia as the sole nitrogen source. For two auxotrophs that lacked any detectable GS activity, R. meliloti DNA of the mutated region was cloned and partially characterized. Lack of cross-hybridization indicated that the cloned regions were not closely linked to each other or to glnA; they therefore contain two independent genes needed for GSII synthesis or activity. One of the cloned regions was identified as glnII. An R. meliloti glnII mutant and an R. meliloti glnA glnII double mutant were constructed. Both formed effective nodules on alfalfa. This is unlike the B. japonicum-soybean symbiosis, in which at least one of these GS enzymes must be present for nitrogen-fixing nodules to develop. However, the R. meliloti double mutant was not a strict glutamine auxotroph, since it could grow on media that contained glutamate and ammonia, an observation that suggests that a third GS may be active in this species.  相似文献   

14.
15.
To contribute nitrogen for plant growth and establish an effective symbiosis with alfalfa, Sinorhizobium meliloti Rm1021 needs normal operation of the GlnD protein, a bifunctional uridylyltransferase/uridylyl-cleavage enzyme that measures cellular nitrogen status and initiates a nitrogen stress response (NSR). However, the only two known targets of GlnD modification in Rm1021, the PII proteins GlnB and GlnK, are not necessary for effectiveness. We introduced a Tyr→Phe variant of GlnB, which cannot be uridylylated, into a glnBglnK background to approximate the expected state in a glnD-sm2 mutant, and this strain was effective. These results suggested that unmodified PII does not inhibit effectiveness. We also generated a glnBglnK-glnD triple mutant and used this and other mutants to dissect the role of these proteins in regulating the free-living NSR and nitrogen metabolism in symbiosis. The glnD-sm2 mutation was dominant to the glnBglnK mutations in symbiosis but recessive in some free-living phenotypes. The data show that the GlnD protein has a role in free-living growth and in symbiotic nitrogen exchange that does not depend on the PII proteins, suggesting that S. meliloti GlnD can communicate with the cell by alternate mechanisms.  相似文献   

16.
17.
18.
从浑球红细菌的基因文库中筛选到pHT3、pHT10及pHT35三个阳性克隆,其中质粒pHT10与pHT35能遗传互补英膜红细菌的谷氨酰胺缺陷型G29,使其GS酶及固氮酶活性得到恢复。对质粒pHT10上的glnA同源片段进行了亚克隆和限制性内切酶图谱分析,确定了浑球红细菌glnB与glnA之间存在连锁关系。  相似文献   

19.
20.
Mutations in a site, glnF, linked by P1-mediated transduction of argG on the chromosome of Klebsiella aerogenes, result in a requirement for glutamine. Mutants in this gene have in all media a level of glutamine synthetase (GS) corresponding to the level found in the wild-type strain grown in the medium producing the strongest repression of GS. The adenylylation and deadenylylation of GS in glnF mutants is normal. The glutamine requirement of glnF mutants could be suppressed by mutations in the structural gene for GS, glnA. These mutations result in altered regulation of GS synthesis, regardless of the presence or absence of the glnF mutation (GlnR phenotype). In GlnR mutants the GS level is higher than in the wild-type strain when the cells are cultured in strongly repressing medium, but lower than in the wild-type strain when cells are cultured in a derepressing medium. Heterozygous merodiploids carrying a normal glnA gene as well as a glnA gene responsible for the GlnR phenotype behave in every respect like merodiploids carrying two normal glnA genes. These results confirm autogenous regulation of GS synthesis and indicate that GS is both a repressor and an activator of GS synthesis. The mutation in glnA responsible for the GLnR phenotype has apparently resulted in the formation of a GS that is incompetent both as repressor and as activator of GS synthesis. According to this hypothesis, the product of the glnF gene is necessary for activation of the glnA gene by GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号