首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Australian species of the genus Trigonopterus Fauvel are revised. Eight previously recognized species are redescribed and 24 additional new species are described: Trigonopterus allaetus Riedel, sp. n., Trigonopterus athertonensis Riedel, sp. n., Trigonopterus australinasutus Riedel, sp. n., Trigonopterus australis Riedel, sp. n., Trigonopterus bisignatus Riedel, sp. n., Trigonopterus bisinuatus Riedel, sp. n., Trigonopterus boolbunensis Riedel, sp. n., Trigonopterus cooktownensis Riedel, sp. n., Trigonopterus daintreensis Riedel, sp. n., Trigonopterus deplanatus Riedel, sp. n., Trigonopterus finniganensis Riedel, sp. n., Trigonopterus fraterculus Riedel, sp. n., Trigonopterus garradungensis Riedel, sp. n., Trigonopterus hasenpuschi Riedel, sp. n., Trigonopterus hartleyensis Riedel, sp. n., Trigonopterus kurandensis Riedel, sp. n., Trigonopterus lewisensis Riedel, sp. n., Trigonopterus montanus Riedel, sp. n., Trigonopterus monteithi Riedel, sp. n., Trigonopterus mossmanensis Riedel, sp. n., Trigonopterus oberprieleri Riedel, sp. n., Trigonopterus robertsi Riedel, sp. n., Trigonopterus terraereginae Riedel, sp. n., Trigonopterus yorkensis Riedel, sp. n.. All new species are authored by the taxonomist-in-charge, Alexander Riedel. Lectotypes are designated for the following names: Idotasia aequalis Pascoe, Idotasia albidosparsa Lea, Idotasia evanida Pascoe, Idotasia laeta Lea, Idotasia rostralis Lea, Idotasia sculptirostris Lea, Idotasia squamosa Lea. A new combination of the name Idotasia striatipennis Lea is proposed: Trigonopterus striatipennis (Lea), comb. n.. A key to the species is provided. Australian Trigonopterus occur in coastal Queensland, narrowly crossing into New South Wales. The southern parts of the range are inhabited by species found on foliage. A rich fauna of 19 edaphic species inhabiting the leaf litter of tropical forests is reported for the first time from the Australian Wet Tropics.  相似文献   

2.
The λdv1 plasmid forms an extensive oligomeric series of circular DNA molecules in recombination-proficient (recsu+) Escherichia coli. These rec+ [λdv1]+ strains can be typed into the following four classes according to which member of the oligomeric series is most frequent: monomer, dimer, trimer, and tetramer strains. Each of these strains forms a set of circular λdv1 DNA molecules in which most members belong to the series l, 2l, 3l, 4l, where l is the length of the most frequent circular DNA that characterizes the strain—i.e. l equals the length of the most frequent oligomer in the respective strain. In a given strain, the frequency of a molecular species decreases as its length becomes a larger multiple of l. For example, the dimer strains produce dimers, tetramers, hexamers, octomers, etc., in decreasing frequencies, which reach the limits of detection at about the hexadecamer.When recA? mutations that are absolutely defective for host recombination are introduced into each of these four strains, l retains the same values as in the parent rec+ strain, but oligomers larger than 2l are not formed, and the frequency of the 2l oligomer is much reduced. The introduction of recB? or recC? mutations, which are only partially defective for host recombination, produces a much smaller perturbation of the rec+ distributions, and rec+recA? merodiploids exhibit the rec+ phenotype with respect to both oligomerization and host recombination.The effects of rec? mutations on the distribution of λdv1 oligomers and the nature of the oligomeric series produced in rec+ cells all indicate that an intermolecular reciprocal recombination between two circular λdv1 DNAs is the principal reaction responsible for oligomerization. It is suggested that the small residual oligomerization that yields 2l oligomers in recA?cells results from aberrant segregation of the DNA strands at the termination of the replication of l-sized molecules.The inactivation of recA, but not of recB or C, also results in a marked reduction in the frequency of spontaneous curing which in recA+dv1+]hosts leads to the segregation of [λdv?]cells. However, spontaneous curing does not appear to be dependent upon the recombination reactions that yield the [λdv 1+]oligomers, since the frequency of oligomerization in recA+ hosts decreases with increasing l, whereas the frequency of curing increases with increasing l.  相似文献   

3.
The structure of the anode space charge sheath of a vacuum arc is studied with allowance for the dependence of the negative anode fall on the ratio of the directed electron velocity v 0 to the electron thermal velocity v T for different values of the flux density of atoms evaporated from the anode. Poisson’s equation for the sheath potential is solved taking into account the electron space charge, fast cathode ions, and slow ions produced due to the ionization of atoms evaporated from the anode. The kinetic equation for atoms and slow anode ions is solved with allowance for ionization in the collision integral. Analytic solutions for the velocity distribution functions of atoms and slow ions and the density of slow ions are obtained. It is shown that the flux of slow ions substantially affects the spatial distribution of the electric field E(z) in the sheath. As the flux density increases, the nonmonotonic dependence E(z) transforms into a monotonic one and the sheath narrows. For a given flux of evaporated atoms Πa, the increase in the ratio of the directed electron velocity to the electron thermal velocity leads again to a nonmonotonic dependence E(z). As z increases, the electric field first increases, passes through the maximum, decreases, passes through the minimum E min, and then again increases toward the anode. There is a limiting value of the ratio (v 0/v T )* at which E min(z) vanishes. At v 0/v T > (v 0/V T )*, the condition for the existence of a steady-state sheath is violated and the profiles of the field and potential in the sheath become oscillating. The dependence of (v 0/v T )* on the flux density of evaporated atoms Π a is obtained. It is shown that the domain of existence of steady-state solutions in the sheath broadens with increasing Π a .  相似文献   

4.
Definitions are proposed for the independent and joint contributions that the chemical groups A and B make to the free energy of association of the ligand A?B with a receptor. The definitions are independent of the choice of the standard state and are consistent with the basic thermodynamic cycle relating the association of the ligands A?B, A?Y and X?B to the receptor Rappaport 1976. The basic idea is the use of the excess free energy of association of the ligand A?Y over the free energy of association of the reference ligand X?Y as the measure of the “independent” contribution of the group A to the binding. This definition allows the free energy of association of the ligand A?B to be written as the sum of the independent contributions of the groups A and B, their joint contribution, and an invariant free energy of association of the reference ligand with any receptor. With the appropriate definition of the receptor-reference ligand complex, water can be chosen as the reference ligand. Using ΔG(A?OH)?AG(HOH), ΔG(H?B?H)?ΔG(HOH) and ΔG(HO?C)?ΔG(HOH) as the definitions of the “independent” contributions of the chemical groups A, B and C to the binding of the ligand A?B?C, the joint contribution of the groups A and C to the binding is ΔG(A?B?C) ? ΔG(A?B?H) ? ΔG(H-B-C) + ΔG(H?B?H).  相似文献   

5.
The two membrane-bound respiratory nitrate reductases of Escherichia coli are encoded by distinct operons at two different loci, chlC and chlZ, on the chromosome. The chlZ locus includes a narK homologue, narU, encoding a nitrite extrusion protein, and narZYWV encoding nitrate reductase Z. No apparent homologue to the narXL operon has been found. Homology between narU and narK on the one hand and narZYWV and narGHJI on the other hand is limited to the coding regions.  相似文献   

6.
Michel Sartori 《ZooKeys》2014,(445):97-106
The type material of Epeorella borneonia Ulmer, 1939, the sole species of the genus Epeorella Ulmer, 1939 is reinvestigated and a lectotype (male imago) is designated. Based on several morphological structures, the synonymy with Epeorus Eaton, 1881 (Rhithrogeninae) is rejected. Epeorella stat. prop., known only at the winged stages, belongs to the subfamily Ecdyonurinae, and is a probable endemic of the island of Borneo. The newly erected genus Darthus Webb & McCafferty, 2007, also endemic to Borneo and only known by one species at the nymphal stage, is shown to be a junior subjective synonym of Epeorella. The new combination Epeorella vadora (Webb & McCafferty, 2007) is proposed for the species. The distribution of known heptageniid species from the Sunda Islands is discussed.  相似文献   

7.
Two self-incompatibility genes in Brassica, SLG and SRK (SLG encodes a glycoprotein; SRK encodes a receptor-like kinase), are included in the S multigene family. Products of members of the S multigene family have an SLG-like domain (S domain) in common, which may function as a receptor. In this study, three clustered members of the S multigene family, BcRK1, BcRL1 and BcSL1, were characterized. BcRK1 is a putative functional receptor kinase gene expressed in leaves, flower buds and stigmas, while BcRL1 and BcSL1 are considered to be pseudogenes because deletions causing frameshifts were identified in these sequences. Sequence and expression pattern of BcRK1 were most similar to those of the Arabidopsis receptor-like kinase gene ARK1, indicating that BcRK1 might have a function similar to that of ARK1, in processes such as cell expansion or plant growth. Interestingly, the region containing BcRK1, BcRL1 and BcSL1 is genetically linked to the S locus and the physical distance between SLG, SRK and the three S-related genes was estimated to be less than 610 kb. Thus the genes associated with self-incompatibility exist within a cluster of S-like genes in the genome of Brassica.  相似文献   

8.
The Arabidopsis fruit mainly consists of a mature ovary that shows three well defined territories that are pattern elements along the mediolateral axis: the replum, located at the medial plane of the flower, and the valve and the valve margin, both of lateral nature. JAG/FIL activity, which includes the combined functions of JAGGED (JAG), FILAMENTOUS FLOWER (FIL), and YABBY3 (YAB3), contributes to the formation of the two lateral pattern elements, whereas the cooperating genes BREVIPEDICELLUS (BP) and REPLUMLESS (RPL) promote replum development. A recent model to explain pattern formation along the mediolateral axis hypothesizes that JAG/FIL activity and BP/RPL function as antagonistic lateral and medial factors, respectively, which tend to repress each other. In this work, we demonstrate the existence of mutual exclusion mechanisms between both kinds of factors, and how this determines the formation and size of the three territories. Medial factors autonomously constrain lateral factors so that they only express outside the replum, and lateral factors negatively regulate the medially expressed BP gene in a non-autonomous fashion to ensure correct replum development. We also have found that ASYMMETRIC LEAVES1 (AS1), previously shown to repress BP both in leaves and ovaries, collaborates with JAG/FIL activity, preventing its repression by BP and showing synergistic interactions with JAG/FIL activity genes. Therefore AS gene function (the function of the interacting genes AS1 and AS2) has been incorporated in the model as a new lateral factor. Our model of antagonistic factors provides explanation for mutant fruit phenotypes in Arabidopsis and also may help to understand natural variation of fruit shape in Brassicaceae and other species, since subtle changes in gene expression may cause conspicuous changes in the size of the different tissue types.  相似文献   

9.
FOF1 ATP synthases are rotary nanomotors that couple proton translocation across biological membranes to the synthesis/hydrolysis of ATP. During catalysis, the peripheral stalk, composed of two b subunits and subunit δ in Escherichia coli, counteracts the torque generated by the rotation of the central stalk. Here we characterize individual interactions of the b subunits within the stator by use of monoclonal antibodies and nearest neighbor analyses via intersubunit disulfide bond formation. Antibody binding studies revealed that the C-terminal region of one of the two b subunits is principally involved in the binding of subunit δ, whereas the other one is accessible to antibody binding without impact on the function of FOF1. Individually substituted cysteine pairs suitable for disulfide cross-linking between the b subunits and the other stator subunits (b-α, b-β, b-δ, and b-a) were screened and combined with each other to discriminate between the two b subunits (i.e. bI and bII). The results show the b dimer to be located at a non-catalytic α/β cleft, with bI close to subunit α, whereas bII is proximal to subunit β. Furthermore, bI can be linked to subunit δ as well as to subunit a. Among the subcomplexes formed were a-bI-α, bII-β, α-bI-bII-β, and a-bI-δ. Taken together, the data obtained define the different positions of the two b subunits at a non-catalytic interface and imply that each b subunit has a different role in generating stability within the stator. We suggest that bI is functionally related to the single b subunit present in mitochondrial ATP synthase.  相似文献   

10.
《Plant Science Letters》1978,11(3-4):217-226
Potato tuber mitochondria, depleted from cytochrome c by salt washing, were dispersed by bile salts to obtain a soluble fraction containing the cytochrome b-c1 complex. The dissociation of this complex was only possible by using β-mercaptoethanol and seems to involve the disappearance of 2 of the 3 b cytochromes seen in plant mitochondria and in the soluble b-c1 complex. Spectral characteristics of the isolated cytochromes b and c1 are given.  相似文献   

11.
To infer the phylogenetic relationships of Xylaria species associated with termite nests within the genus Xylaria and among genera of the subfamily Xylarioideae, β-tubulin, RPB2, and α-actin sequences of 131 cultures of 114 species from Xylaria and 11 other genera of the subfamily were analyzed. These 11 genera included Astrocystis, Amphirosellinia, Discoxylaria, Entoleuca, Euepixylon, Kretzschmaria, Nemania, Podosordaria, Poronia, Rosellinia, and Stilbohypoxylon. We showed that Xylaria species were distributed among three major clades, TE, HY, and PO, with clade TE—an equivalent of the subgenus Pseudoxylaria—encompassing exclusively those species associated with termite nests and the other two clades containing those associated with substrates other than termite nests. Xylaria appears to be a paraphyletic genus, with most of the 11 genera submerged within it. Podosordaria and Poronia, which formed a distinct clade, apparently diverged from Xylaria and the other genera early. Species of Entoleuca, Euepixylon, Nemania, and Rosellinia constituted clade NR, a major clade sister to clade PO, while those of Kretzschmaria were inserted within clade HY and those of Astrocystis, Amphirosellinia, Discoxylaria, and Stilbohypoxylon were within clade PO.  相似文献   

12.
13.
The deduced protein product of the Bacillus subtilis gene yqfI, which is 255 residues long, shares homology (25% identity) with the Escherichia coli RecO protein. A null allele of yqfI, when present in an otherwise Rec+ B. subtilis strain, causes cells to become highly sensitive to DNA-damaging agents, and plasmid transformation (intramolecular recombination) is reduced by 25-fold while chromosomal transformation (intermolecular recombination) is only moderately affected (2.5-fold reduction). Therefore, the yqfI gene was renamed recO and its null allele is referred to as recO1. The recO1 mutation was introduced into recombination-deficient strains representative of the epistatic groups α (recF, recR and recL strains), β (addA5 addB72), γ (recH342) and ? (recU40). The recO mutation did not affect the sensitivity of recF, recR or recL cells to DNA-damaging agents, increased the sensitivity of recU and addAB cells and abolished the DNA repair capacity of recH cells. The recO mutation did not affect intermolecular recombination in recF, recL, recH or recU cells, but reduced (by about 9-fold) the incidence of intermolecular recombination in addAB cells. The recO mutation did not affect intramolecular recombination in the addAB, recU, recF or recL cells, but reduced it by about 75-fold in recH cells. The defects caused by the recO1 mutation can be partially suppressed by a common suppressor of the recF, recL and recR phenotypes. We therefore assigned recO to epistatic group α and predict that the RecO protein acts at the same stage of recombination as the RecF, RecL and RecR proteins, in a RecFLOR complex.  相似文献   

14.
The Pseudoroegneria species are perennial grasses in the Triticeae tribe, whose St genome has been linked to several important polyploid species. Due to frequent hybridization and complex genetic mechanism, the relationships within Pseudoroegneria, and within the Triticeae have been heavily disputed. Using the chloroplast rbcL gene we estimated the nucleotide diversity of 8 Pseudoroegneria species. We also examined the phylogenetic relationships within Pseudoroegneria and of Pseudoroegneria within the Triticeae. The estimates of nucleotide diversity indicated that Pseudoroegneria tauri and Pseudoroegneria spicata species had the highest diversity, while Pseudoroegneria gracillima had the lowest diversity. The phylogenetic analysis of Pseudoroegneria placed all P. spicata species into a clade separate from the other Pseudoroegneria species, while the relationship of the other Pseudoroegneria species could not be determined. Due to the groupings of Pseudoroegneria with the polyploid Elymus, our results strongly supported Pseudoroegneria as the maternal genome donor to Elymus. There was also weak support that P. spicata may be the maternal donor to the StH Elymus species.  相似文献   

15.
16.
17.
Allapinin (lappaconitine hydrobromide) is a drug used for the treatment of cardiac rhythm disturbances; its properties are characteristic of class IC antiarrhythmics. The mechanism of its electrophysiological action involves the blockade of Na+ channels with a subsequent decrease of depolarization rate leading to a slowing of impulse propagation and a decrease of excitability in the conductive system of the heart. Factors underlying the side effects of Allapinin (tachycardia, arterial hypertension, impaired coordination, etc.) are currently unknown, and therefore a study of the molecular mechanisms of its action seems relevant. The target genes of the drug were identified in rats with induced aconitine arrhythmia using the commercially available Rat Neuroscience Ion Channels & Transporters RT2 Profiler? PCR Array kit (SA Biosciences). A comparison of expression levels of 84 genes in rats treated with Allapinin, after the induction of arrhythmia by aconitine (experiment) and in physiological saline-treated arrhythmic rats (control), revealed 18 mRNAs which were up- or downregulated twofold or more in the experiment relative to the control. Allapinin was shown to stimulate the expression of genes coding for various types of K+ channels (kcna6, kcnj1, kcnj4, kcnq2, and kcnq4), Ca2+ channel (cacna1g), and vesicular acetylcholine transporter (slc18a3). A decrease in mRNA levels was detected for genes coding for K+ channels (kcne1, kcns1), a Na+ channel (scn8a), and membrane transporter genes (atp4a, slc6a9). Our data shows that Allapinin administered to animals with aconitine arrhythmia modulates the expression of genes accounting for ion current conductances involved in the formation of various phases of action potential (I Na , I to , I Ks , I K1 , I CaT ). The effect of the drug on the levels of mRNAs coding for acetylcholine and glycine transporters suggests the involvement of these neuromediators in the mechanisms underlying the antiarrhythmic effect of Allapinin.  相似文献   

18.
Isolated giant axons were voltage-clamped in seawater solutions having constant sodium concentrations of 230 mM and variable potassium concentrations of from zero to 210 mM. The inactivation of the initial transient membrane current normally carried by Na+ was studied by measuring the Hodgkin-Huxley h parameter as a function of time. It was found that h reaches a steady-state value within 30 msec in all solutions. The values of h , τh, αh,and βh as functions of membrane potential were determined for various [K o]. The steady-state values of the h parameter were found to be inversely related, while the time constant, τh, was directly related to external K+ concentration. While the absolute magnitude as well as the slopes of the h vs. membrane potential curves were altered by varying external K+, only the magnitude and not the shape of the corresponding τh curves was altered. Values of the two rate constants, αh and βh, were calculated from h and τh values. αh is inversely related to [Ko] while βh is directly related to [Ko] for hyperpolarizing membrane potentials and is independent of [Ko] for depolarizing membrane potentials. Hodgkin-Huxley equations relating αh and βh to Em were rewritten so as to account for the observed effects of [Ko]. It is concluded that external potassium ions have an inactivating effect on the initial transient membrane conductance which cannot be explained solely on the basis of potassium membrane depolarization.  相似文献   

19.
The Australian harvestmen genus Megalopsalis (Neopilionidae: Enantiobuninae) is recognised as a senior synonym of the genera Spinicrus and Hypomegalopsalis, and seven new species are described in Megalopsalis: Megalopsalis suffugiens, Megalopsalis walpolensis, Megalopsalis caeruleomontium, Megalopsalis atrocidiana, Megalopsalis coronata, Megalopsalis puerilis and Megalopsalis sublucens. A morphological phylogenetic analysis of the Enantiobuninae is also conducted including the new species. Monophyly of Neopilionidae and Enantiobuninae including ‘Monoscutidae’ is corroborated, with the Australasian taxa as a possible sister clade to the South American Thrasychirus.  相似文献   

20.
The extracellular hemoglobin of the earthworm has four major O2-binding chains, a, b, c and d, together with additional non-heme structural chains that are required for assembly. Although the abc trimer self-associates extensively at least to (abc)10, addition of chain d results in the formation of a discrete 280 kDa complex corresponding to (abcd)4. Thus a primary function of chain d is to cap the abc association and convert an abc trimer that binds O2 with weak cooperativity to a highly cooperative (abcd)4 complex. Amino-acid sequences of the major globin chains a, b, c have been determined previously by peptide and cDNA analysis. However, the peptide sequence reported for the major chain d (Shishikura, F., Snow, J.W., Gotoh, T., Vinogradov, S.N. and Walz, D.A. (1987) J. Biol. Chem., 262, 3123–3131), has a calculated molecular mass 134–167 Da higher than masses for components of chain d determined by mass spectrometry (Ownby, D.W., Zhu, H., Schneider, K., Beavis, R.C., Chait, B.T. and Riggs, A.F. (1993) J. Biol. Chem. 268, 13539–13547). Reverse-phase HPLC confirms the presence of two distinct polypeptides, d1 and d2, together with d1′, a variant of d1. cDNA-derived amino-acid sequences have been determined for chains d1′ and d2 by application of the polymerase chain reaction with primers based on the NH2-terminal sequences and oligo-dT. Each of the two cDNA-derived sequences has 140 residues and they differ by 28 substitutions. The data show that the sequence originally reported had been derived from peptides generated from both polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号