首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins are induced by stressful stimuli and have been shown to protect cells and organs from such stresses both in vitro and in vivo. This study examined the regulation of HSP70 mRNA expression and detected the effect of aging on RNA expression in hippocampus of rats. The stress models were built by using forced-swimming in 25 degrees C and 4 degrees C water, respectively. Two groups of male rats, 2-month-old and 16-month-old, respectively, were randomly divided into three subgroups: acute stress (AS) model, chronic habituation stress (CHS) model and chronic dishabituation stress (CDS) model. Observation of exploratory behavior in an open-field (OF) test indicated stress levels. The expression of HSP70 mRNA in hippocampus was measured by RT-PCR after 0, 30, 60, 180, and 360 min of stress, respectively. Results showed that the number of quadrant crossing in both aged CHS and young CHS groups decreased gradually with the process of stress, reflecting an adaptation to the stress condition. Repeated swimming in warm water resulted in habitual expression of HSP70 mRNA in both young and aged CHS group, indicating an adaptation to the stress. The RNA expression of young CHS group was significantly stronger than that of the aged CHS group at 30, 60, 180, and 360 min after stress (P < 0.05). Meanwhile, in an intensive stress level in which the rats swam in 4 degrees C water, a high expression level of HSP70 mRNA was achieved in CDS groups, producing a dishabituation that proved the habitual expression from the other side. These results showed that senescence dramatically affected both exploratory behavior and HSP70 mRNA expression in rats' hippocampus. The results also suggested that chronic stress could lead to the habituational expression of HSP70 mRNA, but high intensive stress could reverse the habituational state and lead to the dishabituational expression. Moreover, the duration of stimuli is one of the important factors that affect the level of HSP70 mRNA expression.  相似文献   

2.
Listeria monocytogenes is an important food-borne pathogen that can tolerate a wide range of stress conditions. However, its stress adaptation processes are still poorly understood. Real-time-based quantitative RT-PCR (qRT-PCR) provides a tool to probe gene expression changes underlying stress adaptation. But, a limitation to study mRNA levels by real-time qRT-PCR is that validated reference genes are required for normalization. Such genes are currently lacking for experimental models that may be applied to evaluate stress-related gene expression changes in L. monocytogenes. Therefore, five housekeeping genes (HKG) were studied as potential reference genes. Their expression stability was evaluated across 16 L. monocytogenes strains. Three experimental models designed to assess gene expression changes induced by cold, acid and high NaCl concentration stress adaptation were applied. The 16S rRNA gene was consistently the most stably expressed HKG across the different L. monocytogenes strains under all the experimental conditions. While the expressions of beta-glucosidase (bglA), Glyceraldehyde-3P-dehydrogenase (gap), RNA polymerase beta subunit (rpoB) and Ribosomal protein L4 (rplD) was stable amongst the different L. monocytogenes strains, they were prone to significant variations under the different stress adaptation models.  相似文献   

3.
4.
Changes in gene expression may lead to cellular adaptation of water-deficit stress, yet all of the induced mRNAs may not play this role. Changes in gene expression must be signalled by transduction mechanisms that first sense a water deficit. This first step triggers changes in gene expression that function to synthesize additional signals such as abscisic acid (ABA). The enzymes involved in ABA biosynthesis have been cloned and their regulation during water-deficit stress is being characterized. Once ABA levels are increased, further signalling mechanisms are initiated to signal new gene expression patterns that are proposed to play a role in cellular adaptation to water-deficit stress. As the genome of Arabidopsis is now completed, much more information can be exploited to characterize these responses.  相似文献   

5.
温度是限制物种适应性分布的重要环境因子,对极端环境温度的耐受性决定生物分布和扩散范围,而表观遗传可以提供快速的响应机制,促使生物快速适应极端环境温度。染色质重塑作为表观遗传的重要组成部分之一,其可以通过调控胁迫相关基因的表达从而促进生物适应不良环境条件。本文主要阐述了染色质重塑复合物的分类、组成和染色质重塑的方式,梳理了染色质重塑在生物温度适应性中的研究进展,提出染色质重塑在生物适应不良环境温度过程中发挥重要作用,并对未来染色质重塑与温度适应性研究提出建议。  相似文献   

6.
Soil bacteria need to adapt quickly to changes in the environmental conditions. Physiological adaptation plays an important role in microbial survival, especially under stressful conditions. Here the abilities of chemicals and pesticides to modulate physiological adaptive and cross-protective responses, that make the bacteria more resistant to oxidative stress, are examined in the soil bacterium and phytopathogen, Xanthomonas. The genetic basis for the observed stress resistance, as well as the regulatory mechanisms controlling gene expression during the process, has begun to be elucidated.  相似文献   

7.
8.
9.
The overexpression of the antiapoptotic gene Bcl-2 has been previously shown to protect cells from undergoing apoptosis during exposure to environmental stress. There is strong evidence that, in addition to its well-known effects on apoptosis, Bcl-2 is involved in antioxidant protection and regulation of cell cycle progression. To determine if the overexpression of Bcl-2 could improve the process of adaptation to suspension and protein-free growth environments, we have studied the growth and viability of anchorage-dependent Chinese hamster ovary cell lines that differ only in there expression of Bcl-2. In addition, we examined the effect of combining Bcl-2 and p21CIP1 expression during adaptation to suspension and protein-free environments. The results of this study provide evidence of a clear reduction in the overall time required for the process of adaptation to both suspension and protein-free environments in Bcl-2 expressing cultures and that through the combined expression of p21CIP1 and Bcl-2, it is possible to further reduce the time. The Bcl-2 results support the well-demonstrated concept that this protein plays an important role in apoptotic signaling pathways and suggest that it may also provide more diverse functions beside its death-inhibiting role.  相似文献   

10.
This review describes the metabolic alterations and adaptations of yeast cells in response to osmotic stress. The basic theme of the cellular response is known to be exclusion of the extracellular stress agent salt and intracellular accumulation of the compatible solute glycerol. Molecular details of these basic processes are currently rather well known. However, analysis of expression changes during adaptation to salt has revealed a number of metabolic surprises. These include the induced expression of genes involved in glycerol dissimilation as well as trehalose turnover. The physiological rationale for these responses to osmotic stress is discussed. A model is presented in which it is hypothesised that the two pathways function as glycolytic safety valves during adaptation to stress.  相似文献   

11.
12.
13.
细胞程序性死亡在植物适应逆境中的意义   总被引:3,自引:0,他引:3  
细胞程序性死亡是近年来生命科学的研究热点之一,它不仅在植物生长发育中起重要作用,而且与植物适应逆境也密切相关。本文就细胞程序性死亡在植物适应逆境中的重要作用进行了综述,以期对细胞程序性死亡的研究进一步深入和对植物适应逆境的潜力有新的认识。  相似文献   

14.
15.
16.
17.

Soil bacteria need to adapt quickly to changes in the environmental conditions. Physiological adaptation plays an important role in microbial survival, especially under stressful conditions. Here the abilities of chemicals and pesticides to modulate physiological adaptive and cross-protective responses, that make the bacteria more resistant to oxidative stress, are examined in the soil bacterium and phytopathogen, Xanthomonas. The genetic basis for the observed stress resistance, as well as the regulatory mechanisms controlling gene expression during the process, has begun to be elucidated.

  相似文献   

18.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

19.
We have studied the molecular mechanisms underlying neuronal adaptation to chronic ethanol exposure. NG108-15 neuroblastoma cells were used to perform a detailed analysis of ethanol-induced changes in neuronal gene expression. High resolution, quantitative two-dimensional (2-D) gel electrophoresis of in vitro translation products showed both dose-dependent increases and decreases in specific mRNA abundance following treatment with ethanol at concentrations seen in actively drinking alcoholics (50-200 mM). Dose response curves for representative members of the increasing or decreasing response groups had very similar profiles, suggesting that similar mechanisms may regulate members of a response group. Some mRNAs that increased with ethanol treatment appeared identical to species induced by heat shock while other mRNAs were only induced by ethanol. We conclude that chronic ethanol exposure can produce specific coordinate changes in expression of neuronal mRNAs, including some members of the stress protein response. However, the overall pattern of ethanol-responsive gene expression is distinct from the classical heat shock subgroup of stress proteins response. Changes in gene expression and specifically, mechanisms regulating a subset of stress protein expression, could be an important aspect of neuronal adaptation to chronic ethanol seen in alcoholics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号