共查询到20条相似文献,搜索用时 15 毫秒
1.
Beta-catenin, a member of the Armadillo repeat protein family, binds directly to the cytoplasmic domain of E-cadherin, linking it via alpha-catenin to the actin cytoskeleton. A 30-amino acid region within the cytoplasmic domain of E-cadherin, conserved among all classical cadherins, has been shown to be essential for beta-catenin binding. This region harbors several putative casein kinase II (CKII) and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation sites and is highly phosphorylated. Here we report that in vitro this region is indeed phosphorylated by CKII and GSK-3beta, which results in an increased binding of beta-catenin to E-cadherin. Additionally, in mouse NIH3T3 fibroblasts expression of E-cadherin with mutations in putative CKII sites resulted in reduced cell-cell contacts. Thus, phosphorylation of the E-cadherin cytoplasmic domain by CKII and GSK-3beta appears to modulate the affinity between beta-catenin and E-cadherin, ultimately modifying the strength of cell-cell adhesion. 相似文献
2.
Piedra J Martinez D Castano J Miravet S Dunach M de Herreros AG 《The Journal of biological chemistry》2001,276(23):20436-20443
3.
Regulation of E-cadherin/Catenin association by tyrosine phosphorylation 总被引:28,自引:0,他引:28
Roura S Miravet S Piedra J García de Herreros A Duñach M 《The Journal of biological chemistry》1999,274(51):36734-36740
Alteration of cadherin-mediated cell-cell adhesion is frequently associated to tyrosine phosphorylation of p120- and beta-catenins. We have examined the role of this modification in these proteins in the control of beta-catenin/E-cadherin binding using in vitro assays with recombinant proteins. Recombinant pp60(c-src) efficiently phosphorylated both catenins in vitro, with stoichiometries of 1.5 and 2.0 mol of phosphate/mol of protein for beta-catenin and p120-catenin, respectively. pp60(c-src) phosphorylation had opposing effects on the affinities of beta-catenin and p120 for the cytosolic domain of E-cadherin; it decreased (in the case of beta-catenin) or increased (for p120) catenin/E-cadherin binding. However, a role for p120-catenin in the modulation of beta-catenin/E-cadherin binding was not observed, since addition of phosphorylated p120-catenin did not modify the affinity of phosphorylated (or unphosphorylated) beta-catenin for E-cadherin. The phosphorylated Tyr residues were identified as Tyr-86 and Tyr-654. Experiments using point mutants in these two residues indicated that, although Tyr-86 was a better substrate for pp60(c-src), only modification of Tyr-654 was relevant for the interaction with E-cadherin. Transient transfections of different mutants demonstrated that Tyr-654 is phosphorylated in conditions in which adherens junctions are disrupted and evidenced that binding of beta-catenin to E-cadherin in vivo is controlled by phosphorylation of beta-catenin Tyr-654. 相似文献
4.
Fukuta K Abe R Yokomatsu T Omae F Asanagi M Makino T 《The Journal of biological chemistry》2000,275(31):23456-23461
In the present study, experimental control of the formation of bisecting GlcNAc was investigated, and the competition between beta-1,4-GalT (UDP-galactose:N-acetylglucosamine beta-1, 4-galactosyltransferase) and GnT-III (UDP-N-acetylglucosamine:beta-d-mannoside beta-1, 4-N-acetylglucosaminyltransferase) was examined. We isolated a beta-1,4-GalT-I single knockout human B cell clone producing monoclonal IgM and several transfectant clones that overexpressed beta-1,4-GalT-I or GnT-III. In the beta-1,4-GalT-I-single knockout cells, the extent of bisecting GlcNAc addition to the sugar chains of IgM was increased, where beta-1,4-GalT activity was reduced to about half that in the parental cells, and GnT-III activity was unaltered. In the beta-1,4-GalT-I transfectants, the extent of bisecting GlcNAc addition was reduced although GnT-III activity was not altered significantly. In the GnT-III transfectants, the extent of bisecting GlcNAc addition increased along with the increase in levels of GnT-III activity. The extent of bisecting GlcNAc addition to the sugar chains of IgM was significantly correlated with the level of intracellular beta-1,4-GalT activity relative to that of GnT-III. These results were interpreted as indicating that beta-1, 4-GalT competes with GnT-III for substrate in the cells. 相似文献
5.
Protein modification: phosphorylation on tyrosine residues 总被引:12,自引:0,他引:12
T. Hunter 《Current opinion in cell biology》1989,1(6):1168-1181
6.
Catimel B Layton M Church N Ross J Condron M Faux M Simpson RJ Burgess AW Nice EC 《Analytical biochemistry》2006,357(2):277-288
Phosphorylation is a key posttranslational modification for modulating biological interactions. Biosensor technology is ideally suited for examining in real time the role of phosphorylation on protein-protein interactions in signaling pathways. We have developed processes for on-chip phosphorylation of immobilized receptors on biosensor surfaces. These processes have been used to analyze E-cadherin/beta-catenin interactions. Phosphorylation of the intracellular domain (ICD) of E-cadherin modulates its affinity to beta-catenin and consequently the strength of cell-cell adhesion. We have phosphorylated immobilized E-cadherin ICD in situ using casein kinase 1 (CK1), casein kinase 2 (CK2), and src. On-chip phosphorylation of E-cadherin was confirmed using anti-phosphoserine and anti-phosphotyrosine antibodies. The binding of beta-catenin to E-cadherin was analyzed quantitatively. CK1 phosphorylation of E-cadherin increased the binding affinity to beta-catenin from approximately 230 to 4 nM. A similar increase in affinity, from 260 to 4 nM, was obtained with CK2 phosphorylation of E-cadherin. However, phosphorylation by src kinase decreased the affinity constant from approximately 260 nM to 4 microM. Interestingly, phosphorylation of E-cadherin by CK1 or CK2 prevented the inhibition of beta-catenin binding by src phosphorylation. 相似文献
7.
8.
Gao-Uozumi CX Uozumi N Miyoshi E Nagai K Ikeda Y Teshima T Noda K Shiba T Honke K Taniguchi N 《Glycobiology》2000,10(11):1209-1216
A bisecting GlcNAc-binding protein was purified from a Triton X-100 extract of a porcine spleen microsomal fraction using affinity chromatography, in conjunction with an agalacto bisected biantennary sugar chain-immobilized Sepharose. Since the erythroagglutinating phytohemagglutinin (E-PHA) lectin preferentially binds to sugar chains which contain the bisecting GlcNAc, during purification the binding activity of the protein was evaluated by monitoring the inhibition of lectin binding to the N-acetylglucosaminyltransferase III (GnT-III)-transfected K562 cells which express high levels of the bisecting GlcNAc. The molecular mass of the purified protein was found to be 33 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By sequencing analysis, the isolated protein was identified as annexin V. Flow cytometric analysis showed that fluorescein-labeled annexin V binds to the GnT-III-transfected cells but not to mock cells, and that the binding was not affected by the addition of phospholipids. Furthermore, surface plasmon resonance measurements indicated that annexin V binds to the agalacto bisected biantennary sugar chain with a K(d) of 200 microM while essentially no binding was observed in the case of the corresponding non-bisected sample. These results suggest that annexin V has a novel carbohydrate binding activity and may serve as an endogenous lectin for mediating possible signals of bisecting GlcNAc, which have been implicated in a variety of biological functions. 相似文献
9.
Rat brain plasma membranes were solubilized in detergent and a glycoprotein-enriched fraction was obtained by lectin affinity chromatography. This glycoprotein fraction contained insulin receptors, as well as protein kinases capable of phosphorylating some exogenously added substrates such as MAP2 (microtubule associated protein 2) and MBP (myelin basic protein), but not ribosomal protein S6. Phosphoamino acid analysis of MAP2 and MBP showed that phosphotyrosine residues, as well as phosphoserine/phosphotheronine residues, were present in both proteins under basal conditions. Whereas the addition of insulin to the rat brain membrane glycoprotein fraction in vitro had no effect on MAP2 phosphorylation, MBP phosphorylation was stimulated 2.7-fold in response to insulin. This phenomenon was dose-dependent, with half-maximal stimulation of MBP phosphorylation observed with 2 nM insulin. Phosphoamino acid analysis of MBP indicated that insulin stimulated the phosphorylation of tyrosine residues nearly three-fold, whereas the phosphorylation of serine or threonine residues was not increased. These results identify MBP as a substrate for the rat brain insulin receptor tyrosine-specific protein kinase in vitro. 相似文献
10.
Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene 总被引:31,自引:26,他引:31
下载免费PDF全文

《The Journal of cell biology》1993,120(3):757-766
Loss of histotypic organization of epithelial cells is a common feature in normal development as well as in the invasion of carcinomas. Here we show that the v-src oncogene is a potent effector of epithelial differentiation and invasiveness. MDCK epithelial cells transformed with a temperature-sensitive mutant of v-src exhibit a strictly epithelial phenotype at the nonpermissive temperature for pp60v-src activity (40.5 degrees C) but rapidly loose cell-to-cell contacts and acquire a fibroblast-like morphology after culture at the permissive temperature (35 degrees C). Furthermore, the invasiveness of the cells into collagen gels or into chick heart fragments was increased at the permissive temperature. The profound effects of v-src on intercellular adhesion were not linked to changes in the levels of expression of the epithelial cell adhesion molecule E-cadherin. Rather, we observed an increase in tyrosine phosphorylation of E-cadherin and, in particular, of the associated protein beta-catenin. These results suggest a mechanism by which v-src counteracts junctional assembly and thereby promotes invasiveness and dedifferentiation of epithelial cells through phosphorylation of the E-cadherin/catenin complex. 相似文献
11.
Hinoi T Yamamoto H Kishida M Takada S Kishida S Kikuchi A 《The Journal of biological chemistry》2000,275(44):34399-34406
Adenomatous polyposis coli gene product (APC) functions as a tumor suppressor and its mutations in familial adenomatous polyposis and colorectal cancers lead to the accumulation of cytoplasmic beta-catenin. The molecular mechanism by which APC regulates the stability of beta-catenin was investigated. The central region of APC, APC-(1211-2075), has the beta-catenin- and Axin-binding sites and down-regulates beta-catenin. Glycogen synthase kinase-3 beta (GSK-3 beta) phosphorylated beta-catenin slightly in the presence of either APC-(1211-2075) or Axin(delta)(beta)(-catenin), in which the beta-catenin-binding site is deleted, and greatly in the presence of both proteins. The enhancement of the GSK-3 beta-dependent phosphorylation of beta-catenin was eliminated by the APC-binding site of Axin. Axin down-regulated beta-catenin in SW480 cells, but not Axin(delta)(beta)(-catenin). In L cells where APC is intact, Axin(delta)(beta)(-catenin) inhibited Wnt-dependent accumulation of beta-catenin but not Axin-(298-832)(delta)(beta)(-catenin) in which the APC- and beta-catenin-binding sites are deleted. These results indicate that the complex formation of APC and Axin enhances the phosphorylation of beta-catenin by GSK-3 beta, leading to the down-regulation of beta-catenin. 相似文献
12.
Magherini F Busti S Gamberi T Sacco E Raugei G Manao G Ramponi G Modesti A Vanoni M 《The international journal of biochemistry & cell biology》2006,38(3):444-460
The role of tyrosyl phosphorylation/dephosphorylation in the budding yeast Saccharomyces cerevisiae, whose genome does not encode typical tyrosine kinases, has long remained elusive. Nevertheless, several protein kinases phosphorylating poly(TyrGlu) substrates have been identified. In this work, we use the expression of the low molecular weight tyrosine phosphatase Stp1 from the distantly related yeast Schizosaccharomyces pombe, as a tool to investigate whether an unbalanced level of protein tyrosine phosphorylation affects S. cerevisiae growth and metabolism. We correlate the previously reported down-regulation of the phosphotyrosine level brought about by overexpression of Stp1 with a large number of phenotypes indicative of down-regulation of the Ras pathway. These phenotypes include reduction in both glucose- and acidification-induced GTP loading of the Ras2 protein and cAMP signaling, impaired growth on a non-fermentable carbon source, alteration of cell cycle parameters, delayed recovery from nitrogen starvation, increased heat-shock resistance, attenuated pseudohyphal and invasive growth. Genetic data suggest that Stp1 acts either at, or above, the level of Ras2, possibly on the Ira proteins. Consistently, Stp1 was found to bind to immunoprecipitated Ira2. Since a catalytically inactive mutant form of Stp1 (Stp1(C11S)) effectively binds to Ira2 without producing any effect on yeast physiology, we conclude that down-regulation of the Ras pathway by Stp1 requires its phosphatase activity. In conclusion, our data suggest a possible cross-talk between tyrosine phosphorylation and the Ras pathway in yeast. 相似文献
13.
14.
The use of galactosyltransferase to probe nitrocellulose-immobilized glycoproteins for nonreducing terminal N-acetylglucosamine residues 总被引:1,自引:0,他引:1
We report the use of UDPgalactose:N-acetyl-D-glucosaminyl-glycopeptide 4-beta-D-galactosyl-transferase (EC 2.4.1.38), purified from bovine milk, to detect nonreducing terminal N-acetylglucosamine residues on glycoproteins immobilized on nitrocellulose by electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels. Soluble galactosyltransferase incorporates radiolabeled galactose from the substrate UDP-[6-3H]galactose into the appropriate immobilized acceptor with high specificity. Incorporation is proportional to substrate amount and is saturable with time. The kinetics of labeling are independent of substrate amount. Half-maximal incorporation occurs by 4 h and saturation occurs by 16 h. We have used galactosyltransferase as a probe (i) to verify the presence of nonreducing terminal N-acetylglucosamine residues in bovine rod outer segment membrane rhodopsin and in several glycoproteins in F9 murine teratocarcinoma cells and (ii) to detect previously reported endo-beta-N-acetylglucosaminidase activity in a commercial preparation of endoglycosidase F. 相似文献
15.
van Buul JD Anthony EC Fernandez-Borja M Burridge K Hordijk PL 《The Journal of biological chemistry》2005,280(22):21129-21136
Vascular endothelial-cadherin (VE-cadherin) controls endothelial cell-cell adhesion and preserves endothelial integrity. In order to maintain endothelial barrier function, VE-cadherin function is tightly regulated through mechanisms that involve protein phosphorylation and cytoskeletal dynamics. Here, we show that loss of VE-cadherin function results in intercellular gap formation and a drop in electrical resistance of monolayers of primary human endothelial cells. Detailed analysis revealed that loss of endothelial cell-cell adhesion, induced by VE-cadherin-blocking antibodies, is preceded by and dependent on a rapid activation of Rac1 and increased production of reactive oxygen species. Moreover, VE-cadherin-associated beta-catenin is tyrosine-phosphorylated upon loss of cell-cell contact. Finally, the redox-sensitive proline-rich tyrosine kinase 2 (Pyk2) is activated and recruited to cell-cell junctions following the loss of VE-cadherin homotypic adhesion. Conversely, the inhibition of Pyk2 activity in endothelial cells by the expression of CRNK (CADTK/CAKbeta-related non-kinase), an N-terminal deletion mutant that acts in a dominant negative fashion, not only abolishes the increase in beta-catenin tyrosine phosphorylation but also prevents the loss of endothelial cell-cell contact. These results implicate Pyk2 in the reduced cell-cell adhesion induced by the Rac-mediated production of ROS through the tyrosine phosphorylation of beta-catenin. This signaling is initiated upon loss of VE-cadherin function and is important for our insight in the modulation of endothelial integrity. 相似文献
16.
Retinoic acid receptor-beta: immunodetection and phosphorylation on tyrosine residues. 总被引:6,自引:0,他引:6
C Rochette-Egly M P Gaub Y Lutz S Ali I Scheuer P Chambon 《Molecular endocrinology (Baltimore, Md.)》1992,6(12):2197-2209
Polyclonal (RP) and monoclonal (Ab) antibodies were raised against synthetic peptides (or fusion proteins) corresponding to amino acid sequences unique to human and mouse retinoic acid receptor-beta (RAR beta) isoforms. Antibodies directed against the A2 region [Ab6 beta 2(A2), Ab7 beta 2(A2), and RP beta 2(A2)], the D2 region [RP beta(D2)], or the F region [Ab8 beta(F)2, RP beta(F)1, and RP beta(F)2] were selected. The monoclonal and polyclonal antibodies directed against the D2 and F regions specifically immunoprecipitated and recognized by Western blotting all human and mouse RAR beta isoforms (mRAR beta 1, -beta 2, -beta 3, and -beta 4), produced in COS-1 cells transfected with expression vectors containing the corresponding RAR beta cDNA. Furthermore, in gel retardation assays, the monoclonal antibodies supershifted RAR beta protein-RA response element oligonucleotide complexes. Antibodies directed against the A2 region were specific for the RAR beta 2 isoform. The above antibodies allowed us to detect the presence of mRAR beta 2 proteins in mouse embryos and to show that their presence in embryonal carcinoma cells (F9 and P19 cell lines) is dependent upon RA treatment. The antibodies were also used to demonstrate that RAR beta proteins produced by transfection in COS-1 cells are phosphorylated. RAR beta 2 phosphorylation was not affected by RA treatment, whereas the phosphorylation of RAR beta 1 and RAR beta 3 isoforms was greatly enhanced by RA. We also show that, in contrast to RAR alpha 1 and RAR gamma 1, RAR beta 2 proteins contain phosphotyrosine residues and are only weakly phosphorylated in vitro by cAMP-dependent protein kinase. These results support our previous proposal that the various receptors have distinct functions in the RA-signaling pathway. 相似文献
17.
Transformation by avian sarcoma viruses leads to phosphorylation of multiple cellular proteins on tyrosine residues 总被引:6,自引:3,他引:6
下载免费PDF全文

Phosphoamino acid compositions were determined for 10 size classes of cellular proteins, separated by electrophoresis through one-dimensional sodium dodecyl sulfate-polyacrylamide gels. Phosphotyrosine-containing proteins were observed in uninfected chicken embryo fibroblasts in every size class analyzed, ranging from approximately 20,000 to greater than 200,000 daltons. Transformation of chicken embryo fibroblasts by Rous sarcoma virus or PRC II avian sarcoma virus led to increases in phosphorylation of proteins at tyrosine residues in all of these size classes. A large fraction of the phosphotyrosine-containing protein molecules observed in Rous sarcoma virus-transformed cells was larger than 100,000 daltons with a second broad peak in the 35,000- to 60,000-dalton range. This study suggests that there are a number of substrates of viral or cellular tyrosine-specific protein kinases, which have not yet been identified by other methods. 相似文献
18.
Glycosylation in the CH2 domain of Fc is required for immunoglobulins G (IgGs) to exhibit immune effector functions including complement-dependent cytotoxicity (CDC) and antibody-dependent (Ab-dependent) cellular cytotoxicity (ADCC). We recently established that glycosylated Abs are more resistant to papain digestion than non-glycosylated IgGs (Biochem. Biophys. Res. Commun. 2006, 341, 797-803). To test whether specific Fc glycan structures affect Ab resistance to papain, we used in vitro glycoengineering methods to prepare homogeneous Ab glycoforms terminated with either sialic acid (G2S2), beta-galactose (G2), or N-acetylglucosamine (G0) and subjected them to papain digestions. Analyses of aliquots taken at different times during the digestions by matrix-assisted laser desorption-time-of-flight-mass spectroscopy (MALDI-TOF-MS) and high-performance liquid chromatography (HPLC) methods showed that the G0 glycoform was at least two times more resistant to papain digestion than the G2 and G2S2 glycoforms. The increased resistance of the G0 glycoform over the G2 and G2S2 glycoforms was independent of the specific Ab analyzed. A mouse/human chimeric version of Ab1, a fully human version of Ab2, and a humanized version of Ab3 exhibited a similar pattern of glycoform-dependent resistance. These data suggest that terminal sugars of Fc glycans may play important roles in Ab stability and affect resistance to proteases in addition to impacting Ab effector functions. 相似文献
19.
F W Quelle M Egerton L E Samelson D M Wojchowski 《Biochemical and biophysical research communications》1992,188(3):1040-1046
Using FDC-P1 cells stably transfected with a murine erythropoietin receptor cDNA as a model, we recently have shown that erythropoietin (EPO), IL-3 and GM-CSF each induce the rapid phosphorylation of a common cytosolic target, i.e., a M(r) 100,000 phosphoprotein "pp100". Presently, we demonstrate that cytokine-induced phosphorylation of pp100 is primarily at tyrosine residues. This is shown by Western blotting with the anti-phosphotyrosine antibody PY20, and by the resistance of [32P]-pp100 to hydroxide-mediated hydrolysis of phosphates. These data, together with the recent observation by Linnekin et al. that pp100/p97 apparently associates directly with EPO receptors, suggest that pp100 may comprise an immediate common component in the signal transduction pathways of EPO, IL-3, GM-CSF and possibly other type I/II cytokine receptors. Additional analyses suggest that pp100 is distinct from a previously described M(r) 100,000 cytosolic target which is tyrosine phosphorylated in hematopoietic cells upon activation of T-cell receptors. 相似文献