首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pH optima of family 11 xylanases are well correlated with the nature of the residue adjacent to the acid/base catalyst. In xylanases that function optimally under acidic conditions, this residue is aspartic acid, whereas it is asparagine in those that function under more alkaline conditions. Previous studies of wild-type (WT) Bacillus circulans xylanase (BCX), with an asparagine residue at position 35, demonstrated that its pH-dependent activity follows the ionization states of the nucleophile Glu78 (pKa 4.6) and the acid/base catalyst Glu172 (pKa 6.7). As predicted from sequence comparisons, substitution of this asparagine residue with an aspartic acid residue (N35D BCX) shifts its pH optimum from 5.7 to 4.6, with an approximately 20% increase in activity. The bell-shaped pH-activity profile of this mutant enzyme follows apparent pKa values of 3.5 and 5.8. Based on 13C-NMR titrations, the predominant pKa values of its active-site carboxyl groups are 3.7 (Asp35), 5.7 (Glu78) and 8.4 (Glu172). Thus, in contrast to the WT enzyme, the pH-activity profile of N35D BCX appears to be set by Asp35 and Glu78. Mutational, kinetic, and structural studies of N35D BCX, both in its native and covalently modified 2-fluoro-xylobiosyl glycosyl-enzyme intermediate states, reveal that the xylanase still follows a double-displacement mechanism with Glu78 serving as the nucleophile. We therefore propose that Asp35 and Glu172 function together as the general acid/base catalyst, and that N35D BCX exhibits a "reverse protonation" mechanism in which it is catalytically active when Asp35, with the lower pKa, is protonated, while Glu78, with the higher pKa, is deprotonated. This implies that the mutant enzyme must have an inherent catalytic efficiency at least 100-fold higher than that of the parental WT, because only approximately 1% of its population is in the correct ionization state for catalysis at its pH optimum. The increased efficiency of N35D BCX, and by inference all "acidic" family 11 xylanases, is attributed to the formation of a short (2.7 A) hydrogen bond between Asp35 and Glu172, observed in the crystal structure of the glycosyl-enzyme intermediate of this enzyme, that will substantially stabilize the transition state for glycosyl transfer. Such a mechanism may be much more commonly employed than is generally realized, necessitating careful analysis of the pH-dependence of enzymatic catalysis.  相似文献   

2.
K Langsetmo  J A Fuchs  C Woodward 《Biochemistry》1991,30(30):7603-7609
Aspartic acid 26 in Escherichia coli thioredoxin is located at the bottom of a hydrophobic cavity, near the redox-active disulfide of the active site. Asp 26 is embedded in the protein except for part of the surface of one carboxyl oxygen. The high degree of evolutionary conversion of Asp 26 suggests that it plays a critical role in thioredoxin function. We have determined the pKa of Asp 26 by a novel electrophoretic method based on the relative electrophoretic mobilities of wild-type thioredoxin and of D26A thioredoxin (with Asp 26 replaced by alanine). The pKa of Asp 26 determined by this technique is 7.5, more than 3 units above the pKa of a solvated carboxyl side chain. The titration of Asp 26 is thermodynamically linked to the stability of thioredoxin. As expected if thioredoxin stability depends on the ionization state of Asp 26, delta Go WT, the free energy of the cooperative denaturation reaction of wild-type thioredoxin by guanidine hydrochloride, varies with pH in a sigmoidal fashion in the vicinity of pH 7.5. Over the same pH range, the free energy for D26A folding, delta Go D26A, is pH independent and D26A is highly stabilized compared to wild type. From the thermodynamic cycle describing the linkage of Asp 26 titration to thioredoxin stability, the difference in free energy between wild-type thioredoxin with protonated Asp 26 and wild-type thioredoxin with deprotonated Asp 26, delta delta Go (COOH----COO-), is calculated to be 4.9 kcal/mol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Solid state 13C nuclear magnetic resonance measurements of bacteriorhodopsin labeled with [4-13C]Asp show that resonances of single amino acids can be resolved. In order to assign and characterize the resonances of specific Asp residues, three different approaches were used. (1) Determination of the chemical shift anisotropy from side-band intensities provides information about the protonation state of Asp residues. (2) Relaxation studies and T1 filtering allow one to discriminate between resonances with different mobility. (3) A comparison of the spectra of light- and dark-adapted bacteriorhodopsin provides evidence for resonances from aspartic acid residues in close neighborhood of the chromophore. In agreement with other investigations, four resonances are assigned to internal residues. Two of them are protonated in the ground state up to pH 10 (Asp96 and Asp115). All other detected resonances, including Asp85 and Asp212, are due to deprotonated aspartic acid. Two lines due to the two internal deprotonated groups change upon dark and light adaptation, whereas the protonated Asp residues are unaffected.  相似文献   

4.
The energetics of a salt bridge formed between the side chains of aspartic acid 70 (Asp70) and histidine 31 (His31) of T4 lysozyme have been examined by nuclear magnetic resonance techniques. The pKa values of the residues in the native state are perturbed from their values in the unfolded protein such that His31 has a pKa value of 9.1 in the native state and 6.8 in the unfolded state at 10 degrees C in moderate salt. Similarly, the aspartate pKa is shifted to a value of about 0.5 in the native state from its value of 3.5-4.0 in the unfolded state. These shifts in pKa show that the salt bridge is stabilized 3-5 kcal/mol. This implies that the salt bridge stabilizes the native state by 3-5 kcal/mol as compared to the unfolded state. This is reflected in the thermodynamic stability of mutants of the protein in which Asp70, His31, or both are replaced by asparagine. These observations and consideration of the thermodynamic coupling of protonation state to folding of proteins suggest a mechanism of acid denaturation in which the unfolded state is progressively stabilized by protonation of its acid residues as pH is lowered below pH 4. The unfolded state is stabilized only if acidic groups in the folded state have lower pKa values than in the unfolded state. When the pH is sufficiently low, the acid groups of both the native and unfolded states are fully protonated, and the apparent unfolding equilibrium constant becomes pH independent. Similar arguments apply to base-induced unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Commonly a key element enabling proteins to function is an amino acid residue or residues with functional side chains having shifted pKa values. This article reports the results on a set of protein-based polymers (model proteins) that exhibit hydrophobic folding and assembly transitions, and that have been designed for the purpose of achieving large hydrophobic-induced pKa shifts by selectively replacing Val residues by Phe residues. The high molecular weight polypentapeptides, actually poly (tricosapeptides) with six varied pentamers in fixed sequence, were designed and synthesized to have the same amino acid compositions but different proximities between a single aspartic acid residue and 5 Phe residues per 30 residues. With the 5 Phe residues distal from the Asp residue, the observed pKa shift was 2.9 when compared to the Val-containing reference. With the 5 Phe residues within 1 nm of the Asp residue, the pKa shift was 6.2. This represents a free energy of interaction of 8 kcal/moles. To our knowledge, this is the largest pKa shift documented for an Asp residue in a polypeptide– or protein–water system. Data are reviewed that do not support the usual electrostatic arguments for pKa shifts of charge–charge repulsion and/or unfavorable ion self-energies arising from displacement of water by hydrophobic moieties, but rather the data are interpreted to indicate the presence of an apolar–polar repulsive free energy of hydration, which results from a potentially highly cooperative competition between apolar and polar species for hydration. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The acid-base behavior of amino acids is an important subject of study due to their prominent role in enzyme catalysis, substrate binding and protein structure. Due to interactions with the protein environment, their pKas can be shifted from their solution values and, if a protein has two stable conformations, it is possible for a residue to have different “microscopic”, conformation-dependent pKa values. In those cases, interpretation of experimental measurements of the pKa is complicated by the coupling between pH, protonation state and protein conformation. We explored these issues using Nitrophorin 4 (NP4), a protein that releases NO in a pH sensitive manner. At pH 5.5 NP4 is in a closed conformation where NO is tightly bound, while at pH 7.5 Asp30 becomes deprotonated, causing the conformation to change to an open state from which NO can easily escape. Using constant pH molecular dynamics we found two distinct microscopic Asp30 pKas: 8.5 in the closed structure and 4.3 in the open structure. Using a four-state model, we then related the obtained microscopic values to the experimentally observed “apparent” pKa, obtaining a value of 6.5, in excellent agreement with experimental data. This value must be interpreted as the pH at which the closed to open population transition takes place. More generally, our results show that it is possible to relate microscopic structure dependent pKa values to experimentally observed ensemble dependent apparent pKas and that the insight gained in the relatively simple case of NP4 can be useful in several more complex cases involving a pH dependent transition, of great biochemical interest.  相似文献   

7.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1992,31(4):1168-1172
The kinetics of the inhibition of human alpha-thrombin by recombinant hirudin have been studied over the pH range from 6 to 10. The association rate constant for hirudin did not vary significantly over this pH range. The dissociation constant of hirudin depended on the ionization state of groups with pKa values of about 7.1, 8.4, and 9.2. Optimal binding of hirudin to thrombin occurred when the groups with pKa values of 8.4 and 9.0 were protonated and the other group with a pKa of 7.1 was deprotonated. The pH kinetics of genetically engineered forms of hirudin were examined in an attempt to assign these pKa values to particular groups. By using this approach, it was possible to show that protonation His51 and ionization of acidic residues in the C-terminal region of hirudin were not responsible for the observed pKa values. In contrast, the pKa value of 8.4 was not observed when a form of hirudin with an acetylated alpha-amino group was examined, and, thus, this pKa value was assigned to the alpha-amino group of hirudin. The requirement for this group to be protonated for optimal binding to thrombin is discussed in terms of the crystal structure of the thrombin-hirudin complex. Examination of this structure allowed the other pKa values of 7.1 and 9.2 to be tentatively attributed to His57 and the alpha-amino group of Ile16 of thrombin.  相似文献   

8.
The 11-cis-retinal binding site of rhodopsin is of great interest because it is buried in the membrane but yet must provide an environment for charged amino acids. In addition, the active-site lysine residue must be able to engage in rapid Schiff base formation with 11-cis-retinal at neutral and lower pH values. This requires that this lysine be unprotonated. We have begun to study the environment of the active-site lysine using a reporter group adducted to it. Non-active-site permethylated opsin was reacted with 5-nitrosalicylaldehyde, and the resulting Schiff base was permanently fixed by borohydride reduction. The stoichiometry of incorporation was one. This chromophoric and pH-sensitive reporter group affords information on the active-site environment of rhodopsin by determining the ionization constants of its ionizable groups at different pH values. The pH titration of the modified protein showed a single pKa = 7.8 +/- 0.19 ascribable to the ionization of the phenol. The ionization of the modified lysine residue was not observed at all pH values studied. These studies are interpreted to mean that a negatively charged amino acid is propinquous to the active-site lysine residue and that this latter residue does not have an unusually low pKa.  相似文献   

9.
The highly conserved, buried, Asp 26 in Escherichia coli thioredoxin has a pKa = 7.5, and its titration is associated with a sizable destabilization of the protein [Langsetmo, K., Fuchs, J., & Woodward, C. (1991) Biochemistry (preceding paper in this issue)]. A fit of the experimental pH dependence of thioredoxin stability to a theoretical expression for the pH/stability relation in proteins agrees closely with a pKa value of 7.5 for Asp 26. The agreement between the experimental and theoretical changes in protein stability due to substitution of Asp 26 by alanine is also good. The local structure in the vicinity of Asp 26 in the low-pH crystal structure (with uncharged Asp 26) is hydrophobic, indicating that the aspartate would be highly destabilized. In theoretical calculations, the desolvation penalty for deprotonating Asp 26 in this environment is similar to the total protein folding energy. As a consequence, the Asp 26 pKa would be much greater than 7.5, and/or the protein might not fold. This suggests that a compensating process partially stabilizes the Asp 26 carboxyl group when it is charged. A simple model for this proposed, whereby the Lys 57 side chain rotates to form a salt bridge with Asp 26 when it is deprotonated.  相似文献   

10.
The stability of protein is defined not only by the hydrogen bonding, hydrophobic effect, van der Waals interactions, and salt bridges. Additional, much more subtle contributions to protein stability can arise from surface residues that change their properties upon unfolding. The recombinant major cold shock protein of Escherichia coli CspA an all-beta protein unfolds reversible in a two-state manner, and behaves in all other respects as typical globular protein. However, the enthalpy of CspA unfolding strongly depends on the pH and buffer composition. Detailed analysis of the unfolding enthalpies as a function of pH and buffers with different heats of ionization shows that CspA unfolding in the pH range 5.5-9.0 is linked to protonation of an amino group. This amino group appears to be the N-terminal alpha-amino group of the CspA molecule. It undergoes a 1.6 U shift in pKa values between native and unfolded states. Although this shift in pKa is expected to contribute approximately 5 kJ/mol to CspA stabilization energy the experimentally observed stabilization is only approximately 1 kJ/mol. This discrepancy is related to a strong enthalpy-entropy compensation due, most likely, to the differences in hydration of the protonated and deprotonated forms of the alpha-amino group.  相似文献   

11.
The interactions of the substrate analogues, GlcNAc, beta-methyl GlcNAc, (GlcNAc)2, and (GlcNAc)3, with turkey egg-white lysozyme [ED 3.2.1.17], in which the Asp 101 of hen lysozyme is replaced by Gly, were studied at various pH values by measuring changes in the circular dichroic (CD) band at 295 nm. Results were compared with those for hen egg-white lysozyme. The modes of binding of these substrate analogues to turkey lysozyme were very similar to those hen lysozyme except for the participation of Asp 101 in hen lysozyme. The ionization constants of the catalytic carboxyls, Glu 35 and Asp 52, in the turkey lysozyme-(GlcNAc)3 complex were determined by measuring the pH dependence of the CD band at 304 nm, which originates from Trp 108 near the catalytic carboxyls. The ionization behavior of the catalytic carboxyls of turkey lysozyme in the presence and absence of (GlcNAc)3 was essentially the same as that for hen lysozyme. The pH dependence of the binding constant of (GlcNAc)3 to hen lysozyme was compared with that to turkey lysozyme between pH 2 and 8. The pH dependence of the binding constant for (GlcNAc)3 to turkey lysozyme could be interpreted entirely in terms of perturbation of catalytic carboxyls. In the case of hen lysozyme, it was interpreted in terms of perturbation of the catalytic carboxyls and Asp 101 in the substrate-binding site. The pK values of Asp 101 in hen lysozyme and the hen lysozyme-(GLcNAc)3 complex were 4.5 and 3.4, respectively. The binding constants of (GlcNAc)3 to lysozyme molecules with different microscopic protonation forms, with respect to the catalytic carboxyls, were estimated. The binding constant of lysozyme, in which Asp 52 and Glu 35 are deprotonated, to (GlcNAc)3 was the smallest. The other three species had similar binding constant to (GlcNAc)3.  相似文献   

12.
Urea and guanidine-hydrochloride (GdnHCl) are frequently used for protein denaturation in order to determine the Gibbs free energy of folding and kinetic folding/unfolding parameters. Constant pH value is applied in the folding/unfolding experiments at different denaturant concentrations and steady protonation state of titratable groups is assumed in the folded and unfolded protein, respectively. The apparent side-chain pKa values of Asp, Glu, His and Lys in the absence and presence of 6 M urea and GdnHCl, respectively, have been determined by 1H-NMR. pKa values of all four residues are up-shifted by 0.3-0.5 pH units in presence of 6 M urea by comparison with pKa values of the residues dissolved in water. In the presence of 6 M GdnHCl, pKa values are down-shifted by 0.2-0.3 pH units in the case of acidic and up-shifted by 0.3-0.5 pH units in the case of basic residues. Shifted pKa values in the presence of denaturant may have a pronounced effect on the outcome of the protein stability obtained from denaturant unfolding experiments.  相似文献   

13.
Previous studies of the low molecular mass family 11 xylanase from Bacillus circulans show that the ionization state of the nucleophile (Glu78, pK(a) 4.6) and the acid/base catalyst (Glu172, pK(a) 6.7) gives rise to its pH-dependent activity profile. Inspection of the crystal structure of BCX reveals that Glu78 and Glu172 are in very similar environments and are surrounded by several chemically equivalent and highly conserved active site residues. Hence, there are no obvious reasons why their apparent pK(a) values are different. To address this question, a mutagenic approach was implemented to determine what features establish the pK(a) values (measured directly by (13)C NMR and indirectly by pH-dependent activity profiles) of these two catalytic carboxylic acids. Analysis of several BCX variants indicates that the ionized form of Glu78 is preferentially stabilized over that of Glu172 in part by stronger hydrogen bonds contributed by two well-ordered residues, namely, Tyr69 and Gln127. In addition, theoretical pK(a) calculations show that Glu78 has a lower pK(a) value than Glu172 due to a smaller desolvation energy and more favorable background interactions with permanent partial charges and ionizable groups within the protein. The pK(a) value of Glu172 is in turn elevated due to electrostatic repulsion from the negatively charged glutamate at position 78. The results also indicate that all of the conserved active site residues act concertedly in establishing the pK(a) values of Glu78 and Glu172, with no particular residue being singly more important than any of the others. In general, residues that contribute positive charges and hydrogen bonds serve to lower the pK(a) values of Glu78 and Glu172. The degree to which a hydrogen bond lowers a pK(a) value is largely dependent on the length of the hydrogen bond (shorter bonds lower pK(a) values more) and the chemical nature of the donor (COOH > OH > CONH(2)). In contrast, neighboring carboxyl groups can either lower or raise the pK(a) values of the catalytic glutamic acids depending upon the electrostatic linkage of the ionization constants of the residues involved in the interaction. While the pH optimum of BCX can be shifted from -1.1 to +0.6 pH units by mutating neighboring residues within the active site, activity is usually compromised due to the loss of important ground and/or transition state interactions. These results suggest that the pH optima of an enzyme might be best engineered by making strategic amino acid substitutions, at positions outside of the "core" active site, that electrostatically influence catalytic residues without perturbing their immediate structural environment.  相似文献   

14.
We present detailed computational studies based on electrostatic calculations to evaluate the origins of pKa values and the pH dependence of stability for the 10th type III domain of human fibronectin (FNfn10). One of our goals is to validate the calculation protocols by comparison to experimental data (Koide, A.; Jordan, M. R.; Horner, S.; Batori, V.; Koide, S. Biochemistry 2001, 40, 10326-10333). Another goal is to evaluate the sensitivity of the calculated ionization free energies and apparent pKa values on local structural fluctuations, which do not alter the structural convergence to a particular architecture, by using a complete ensemble of solution NMR structures and the NMR average minimized structure of FNfn10 (Main, A. L.; Harvey, T. S.; Baron, M.; Boyd, J.; Campbell, I. D. Cell 1992, 71, 671-678). Our calculations demonstrate that, at high ionic strength, FNfn10 is more stable at low pH compared to neutral pH, in overall agreement with experimental data. This behavior is attributed to contributions from unfavorable Coulombic interactions in a surface patch for the pairs Asp7-Glu9 and Asp7-Asp23. The unfavorable interactions are decreased at low pH, where the acidic residues become neutral, and are further decreased at high ionic strength because of increased screening by salt ions. Elimination of the unfavorable interactions in the theoretical mutants Asp7Asn (D7N) and Asp7Lys (D7K) produce higher calculated stabilities at neutral pH and any ionic strength compared to the wild-type, in agreement with the experimental data. We also discuss subtleties in the calculated apparent pKa values and ionization free energies, which are not in agreement with the experimental data. This work demonstrates that comparative electrostatic calculations can provide rapid predictions of pH-dependent properties of proteins and can be significant aids in guiding the design of proteins with tailored properties.  相似文献   

15.
The ionization state and hydrogen bonding environment of the transition state analogue (TSA) inhibitor, carboxymethyldethia coenzyme A (CMX), bound to citrate synthase have been investigated using solid state NMR. This enzyme-inhibitor complex has been studied in connection with the postulated contribution of short hydrogen bonds to binding energies and enzyme catalysis: the X-ray crystal structure of this complex revealed an unusually short hydrogen bond between the carboxylate group of the inhibitor and an aspartic acid side chain [Usher et al. (1994) Biochemistry 33, 7753-7759]. To further investigate the nature of this short hydrogen bond, low spinning speed 13C NMR spectra of the CMX-citrate synthase complex were obtained under a variety of sample conditions. Tensor values describing the chemical shift anisotropy of the carboxyl groups of the inhibitor were obtained by simulating MAS spectra (233 +/- 4, 206 +/- 5, and 105 +/- 2 ppm vs TMS). Comparison of these values with our previously reported database and ab initio calculations of carbon shift tensor values clearly indicates that the carboxyl is deprotonated. New data from model compounds suggest that hydrogen bonds in a syn arrangement with respect to the carboxylate group have a pronounced effect upon the shift tensors for the carboxylate, while anti hydrogen bonds, regardless of their length, apparently do not perturb the shift tensors of the carboxyl group. Thus the tensor values for the enzyme-inhibitor complex could be consistent with either a very long syn hydrogen bond or an anti hydrogen bond; the latter would agree very well with previous crystallographic results. Two-dimensional 1H-13C heteronuclear correlation spectra of the enzyme-inhibitor complex were obtained. Strong cross-peaks were observed from the carboxyl carbon to proton(s) with chemical shift(s) of 22 +/- 5 ppm. Both the proton chemical shift and the intensity of the cross-peak indicate a very short hydrogen bond to the carboxyl group of the inhibitor, the C.H distance based upon the cross-peak intensity being 2.0 +/- 0.4 A. This proton resonance is assigned to Hdelta2 of Asp 375, on the basis of comparison with crystal structures and the fact that this cross-peak was absent in the heteronuclear correlation spectrum of the inhibitor-D375G mutant enzyme complex. In summary, our NMR studies support the suggestion that a very short hydrogen bond is formed between the TSA and the Asp carboxylate.  相似文献   

16.
The active-site cysteines (Cys 32 and Cys 35) of Escherichia coli thioredoxin are oxidized to a disulfide bridge when the protein mediates substrate reduction. In reduced thioredoxin, Cys 32 and Cys 35 are characterized by abnormally low pKa values. A conserved side chain, Asp 26, which is sterically accessible to the active site, is also essential to oxidoreductase activity. pKa values governing cysteine thiol-thiolate equilibria in the mutant thioredoxin, D26A, have been determined by direct Raman spectrophotometric measurement of sulfhydryl ionizations. The results indicate that, in D26A thioredoxin, both sulfhydryls titrate with apparent pKa values of 7.5+/-0.2, close to values measured previously for wild-type thioredoxin. Sulfhydryl Raman markers of D26A and wild-type thioredoxin also exhibit similar band shapes, consistent with minimal differences in respective cysteine side-chain conformations and sulfhydryl interactions. The results imply that neither the Cys 32 nor Cys 35 SH donor is hydrogen bonded directly to Asp 26 in the wild-type protein. Additionally, the thioredoxin main-chain conformation is largely conserved with D26A mutation. Conversely, the mutation perturbs Raman bands diagnostic of tryptophan (Trp 28 and Trp 31) orientations and leads to differences in their pH dependencies, implying local conformational differences near the active site. We conclude that, although the carboxyl side chain of Asp 26 neither interacts directly with active-site cysteines nor is responsible for their abnormally low pKa values, the aspartate side chain may play a role in determining the conformation of the enzyme active site.  相似文献   

17.
A discussion of the influence of organic solvents on pKa values is presented. Enthalpy and entropy of ionization in organic solvents are compared with aqueous systems. The impact of the solvent on the ionization constants is interpreted based on the free energy of transfer applied to all particles involved in the ionization reaction of acids and bases, and the concept of the 'medium effect' on these species. The limitation of Born's approach (which takes into account only electrostatic effects on the ionization equilibrium) is demonstrated and the importance of solute-solvent interactions on the change of the pKa values emphasized.  相似文献   

18.
Bacillus circulans xylanase contains two histidines, one of which (His 156) is solvent exposed, whereas the other (His 149) is buried within its hydrophobic core. His 149 is involved in a network of hydrogen bonds with an internal water and Ser 130, as well as a potential weak aromatic-aromatic interaction with Tyr 105. These three residues, and their network of interactions with the bound water, are conserved in four homologous xylanases. To probe the structural role played by His 149, NMR spectroscopy was used to characterize the histidines in BCX. Complete assignments of the 1H, 13C, and 15N resonances and tautomeric forms of the imidazole rings were obtained from two-dimensional heteronuclear correlation experiments. An unusual spectroscopic feature of BCX is a peak near 12 ppm arising from the nitrogen bonded 1H epsilon 2 of His 149. Due to its solvent inaccessibility and hydrogen bonding to an internal water molecule, the exchange rate of this proton (4.0 x 10(-5) s-1 at pH*7.04 and 30 degrees C) is retarded by > 10(6)-fold relative to an exposed histidine. The pKa of His 156 is unperturbed at approximately 6.5, as measured from the pH dependence of the 15N- and 1H-NMR spectra of BCX. In contrast, His 149 has a pKa < 2.3, existing in the neutral N epsilon 2H tautomeric state under all conditions examined. BCX unfolds at low pH and 30 degrees C, and thus His 149 is never protonated significantly in the context of the native enzyme. The structural importance of this buried histidine is confirmed by the destablizing effect of substituting a phenylalanine or glutamine at position 149 in BCX.  相似文献   

19.
The ionization state of aspartate 26 in Lactobacillus casei dihydrofolate reductase has been investigated by selectively labeling the enzyme with [13Cgamma] aspartic acid and measuring the 13C chemical shifts in the apo, folate-enzyme, and dihydrofolate-enzyme complexes. Our results indicate that no aspartate residue has a pKa greater than approximately 4.8 in any of the three complexes studied. The resonance of aspartate 26 in the dihydrofolate-enzyme complex has been assigned by site-directed mutagenesis; aspartate 26 is found to have a pKa value of less than 4 in this complex. Such a low pKa value makes it most unlikely that the ionization of this residue is responsible for the observed pH profile of hydride ion transfer [apparent pKa = 6.0; Andrews, J., Fierke, C. A., Birdsall, B., Ostler, G., Feeney, J., Roberts, G. C. K., and Benkovic, S. J. (1989) Biochemistry 28, 5743-5750]. Furthermore, the downfield chemical shift of the Asp 26 (13)Cgamma resonance in the dihydrofolate-enzyme complex provides experimental evidence that the pteridine ring of dihydrofolate is polarized when bound to the enzyme. We propose that this polarization of dihydrofolate acts as the driving force for protonation of the electron-rich O4 atom which occurs in the presence of NADPH. After this protonation of the substrate, a network of hydrogen bonds between O4, N5 and a bound water molecule facilitates transfer of the proton to N5 and transfer of a hydride ion from NADPH to the C6 atom to complete the reduction process.  相似文献   

20.
The dielectric constant in the active site cleft of subtilisin from Bacillus amyloliquefaciens has been probed by mutating charged residues on the rim and measuring the effect on the pKa value of the active site histidine (His64) by kinetics. Mutation of a negatively charged surface residue, which is 12 to 13 A from His64, to an uncharged one Asp----Ser99) lowers the pKa of the histidine by up to 0.4 unit at low ionic strength (0.005 to 0.01 M). This corresponds to an apparent dielectric constant of about 40 to 50 between Asp99 and His64. The mutation is in an external loop that is known to tolerate a serine at position 99 from homologies with subtilisins from other bacilli. The environment between His64 and Asp99 is predominantly protein. Another charged residue that is at a similar distance from His64 (14 to 15 A) and is also in an external loop that is known to tolerate a serine residue is Glu156, at the opposite side of the active site. There is only water in a direct line between His64 and Glu156. Mutation of Glu----Ser156 also lowers the pKa of His64 by up to 0.4 unit at low ionic strength. This change again corresponds to an apparent dielectric constant of about 40 to 50. The pKa values were determined from the pH dependence of kcat/KM for the hydrolysis of peptide substrates, with a precision of typically +/- 0.02 unit. The following suggests that the changes in pKa are real and not artefacts of experimental conditions: Hill plots of the data for pKa determination have gradients (h) of -1.00(+/- 0.02), showing that there are negligible systematic deviations from theoretical ionization curves involving a monobasic acid: the pH dependence for the hydrolysis of two different substrates (succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanyl p-nitroanilide and benzoyl-L-valyl-L-glycyl-L-arginyl p-nitroanilide) gives identical results so that the pKa is independent of substrate; the pH dependence is unaffected by changing the concentration of enzyme, so that aggregation is not affecting the results; the shift in pKa is masked by high ionic strength, as expected qualitatively for ionic shielding of electrostatic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号