首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe(II)- and Fe(III)-induced lipid peroxidation of rabbit small intestinal microvillus membrane vesicles was studied. Ferrous ammonium sulphate, ferrous ascorbate at a molar ratio of 10:1, and ferric citrate, at molar ratios of 1:1 and 1:20, did not stimulate lipid peroxidation. Ferrous ascorbate, 1:1, induced low stimulation, while ferrous ascorbate, 1:20 gave higher stimulation of lipid peroxidation. These results show that in our experimental system, ascorbate is a promotor rather than an inhibitor of lipid peroxidation. Ferric nitrilotriacetate (at molar ratios of 1:2 and 1:10), at an iron concentration of 200 microM, was by far the most effective in inducing lipid peroxidation. Superoxide dismutase, mannitol and glutathione had no effect, while catalase, thiourea and vitamin E markedly decreased ferrous ascorbate 1:20-induced lipid peroxidation. Ferric nitrilotriacetate-induced lipid peroxidation was slightly reduced by catalase and mannitol, significantly reduced by superoxide dismutase, and completely inhibited by thiourea. Glutathione caused a 100% increase in the ferric nitrilotriacetate-induced lipid peroxidation. These results suggest that Fe(II) in the presence of trace amounts of Fe(III), or an oxidizing agent and Fe(III) in the presence of Fe(II) or a reducing agent, are potent stimulators of lipid peroxidation of microvillus membrane vesicles. Addition of deferoxamine completely inhibited both ferrous ascorbate, 1:20 and ferric nitrilotriacetate-induced lipid peroxidation, demonstrating the requirement for iron for its stimulation. Iron-induced peroxidation of microvillus membrane may have physiological significance because it could already be demonstrated at 2 microM iron concentration.  相似文献   

2.
In a previous study tert-butyl hydroperoxide (t-BOOH) was found to promote reductive release of nonheme, nonferritin iron from rat liver microsomes. The reaction was catalyzed by cytochrome P450 and was strictly contingent on the availability of ADP. In this study, t-BOOH was also found to promote microsomal lipid peroxidation, as evidenced by formation of malondialdehyde. t-BOOH-dependent lipid peroxidation was stimulated by ADP, and four lines of evidence suggested that such stimulation was mediated by reductive release and subsequent redox cycling of nonheme, nonferritin iron. First, lipid peroxidation was stimulated by the same concentration of ADP that promoted iron release. Second, depletion of nonheme, nonferritin iron by pretreatment of rats with phenobarbital decreased the stimulation of lipid peroxidation by ADP. Third, the effect of ADP was maximal when the concentration of t-BOOH was adjusted to values that yielded maximum iron release. Fourth, the effect of ADP was abolished by bathophenanthroline, which is known to chelate ferrous iron in a redox inactive form. These results suggest that the reductive release of nonheme, nonferritin iron exacerbates the deleterious effects of t-BOOH on microsomal lipids.  相似文献   

3.
An NADPH-driven enzymatic reduction of an Fe(III)ADP complex by rat liver microsomes has been demonstrated directly for the first time during the initial phase of lipid peroxidation by using two different analytical methods. The reduction rate increased upon increasing the ratio of ADP to ferric iron. Fe(III)ADP reducing activity of both detergent-solubilized microsomes and purified NADPH:cytochrome-P-450 (cytochrome-c) reductase decreased to about 20% compared to that of the native microsomes. Superoxide dismutase and KCN did not inhibit the reduction.  相似文献   

4.
ADP—Fe~(2+)启动脂质过氧化的化学发光研究   总被引:1,自引:1,他引:0  
以化学发光法和雨二醛测定法为实验手段研究了ADP—Fe2+启动的脂质过氧化反应以及几种金属离子对该反应的影响、结果表明,当反应体系中只有ADP-Fe2+存在时,通过化学发光法和丙二醛测定法都可以现察到脂质过氧化反应在0—5分钟内有一“潜伏期”存在,同时在微粒体浓度保持不变的条件下,增大二价铁离子的浓度,则脂质过氧化的水平增强。如果反应体系中同时加入ADP—Fe2+与ADP—Fe3+,则反应起始时的“潜伏期”消失。当ADP—Fe3+、ADP—Al3+和ADP-Pb2+单独存在时本身并不启动脂质过氧化,但对ADP-Fe2+启动的脂质过氧化都有增强作用,并且三价铁离子对鼠肝微粒体脂质过氧化的增强作用随着ADP-Fe2+浓度的增大而逐渐加强。将化学发光法与雨二醛测定法的结果加以比较,发现微粒体本身对它的脂质过氧化反应过程中的发光具有猝灭作用。  相似文献   

5.
BackgroundThere is a significant clinical need for effective treatment of iron deficiency. A number of compounds that can be administered intravenously have been developed. This study examines how the compounds are handled by macrophages and their relative potential to provoke oxidative stress.MethodsHuman kidney (HK-2) cells, rat peritoneal macrophages and renal cortical homogenates were exposed to pharmaceutical iron preparations. Analyses were performed for indices of oxidative stress and cell integrity. In addition, in macrophages, iron uptake and release and cytokine secretion was monitored.ResultsHK-2 cell viability was decreased by iron isomaltoside and ferumoxytol and all compounds induced lipid peroxidation. In the renal cortical homogenates, lipid peroxidation occurred at lowest concentrations with ferric carboxymaltose, iron dextran, iron sucrose and sodium ferric gluconate. In the macrophages, iron sucrose caused loss of cell viability. Iron uptake was highest for ferumoxytol and iron isomaltoside and lowest for iron sucrose and sodium ferric gluconate. Iron was released as secretion of ferritin or as ferrous iron via ferroportin. The latter was blocked by hepcidin. Exposure to ferric carboxymaltose and iron dextran resulted in release of tumor necrosis factor α.ConclusionsExposure to iron compounds increased cell stress but was tissue and dose dependent. There was a clear difference in the handling of iron from the different compounds by macrophages that suggests in vivo responses may differ.  相似文献   

6.
Addition of ferrous sulfate, but not ferric chloride, in micromolar concentrations to rat liver mitochondria induced high rates of consumption of oxygen. The oxygen consumed was several times in excess of the reducing capacity of ferrous-iron (O: Fe ratios 5–8). This occurred in the absence of NADPH or any exogenous oxidizable substrate. The reaction terminated on oxidation of ferrous ions. Malondialdehyde (MDA), measured as thiobarbituric acid-reacting material, was produced indicating peroxidation of lipids. The ratio of O2: MDA was about 4: 1. Pretreatment of mitochondria with ferrous sulfate decreased the rate of oxidation (state 3) with glutamate (+malate) as the substrate by about 40% but caused little damage to energy tranduction process as represented by ratios of ADP: O and respiratory control, as well as calcium-stimulated oxygen uptake and energy-dependent uptake of [45Ca]-calcium. Addition of succinate or ubiquinone decreased ferrous iron-induced lipid peroxidation in intact mitochondria. In frozen-thawed mitochondria, addition of succinate enhanced lipid peroxidation whereas ubiquinone had little effect. These results suggest that ferrous-iron can cause peroxidation of mitochondrial lipids without affecting the energy transduction systems, and that succinate and ubiquinone can offer protection from damage due to such ferrous-iron released from the stores within the cells.  相似文献   

7.
Among tumors in general, Ehrlich ascites tumor cells are particularly resistant to lipid peroxidation. In this study lipid peroxidation was measured in terms of the formation of malondialdehyde-equivalent material in Ehrlich tumor cells during incubation in vitro. It was shown that the high antioxidant potential of these cells could be overcome by a strong radical-promoting agent like ferrous ion. Various amino acids were tested for their capability to augment the effect of Fe(II). Histidine and its 3-methyl-derivative turned out to be the most effective pro-oxidants, whose action could be ascribed to the presence of the imidazole group. From studies with homogenized and denatured cells it was concluded that lipid peroxidation stimulated by Fe(II)-histidinate is an autoxidation process and that no carrier effect of iron by histidine is predominating. The stimulatory action of Fe(II)-histidinate could be completely suppressed by vitamin C, which was shown to be a potent anti-oxidant under the conditions used. The combined application of Fe(II)-histidinate and vitamin C may offer a means to study lipid peroxidation of Ehrlich tumor cells in a controlled manner.  相似文献   

8.
Nonenzymatic reduction of ferric leghemoglobin   总被引:2,自引:0,他引:2  
Ferric leghemoglobin isolated from soybean root nodules was reduced nonenzymatically to ferrous leghemoglobin in vitro at pH 5.2 using either 1.0 mM NADH or NADPH as the reductant. In the pH range of 5.2 to 7.0, the highest rates of reduction occurred below pH 6.5 with a maximum rate observed at pH 5.2. Rates of nonenzymatic ferric leghemoglobin reduction above pH 6.5 or at reduced-pyridine nucleotide concentrations below 0.4 mM were insignificant. Oxygen was required for the nonenzymatic reduction. Inhibition of ferric leghemoglobin reduction by superoxide dismutase and catalase indicated that superoxide and hydrogen peroxide may be intermediates in the reaction.  相似文献   

9.
The role of iron in allyl alcohol-induced lipid peroxidation and hepatic necrosis was investigated in male NMRI mice in vivo. Ferrous sulfate (0.36 mmol/kg) or a low dose of ally alcohol (0.6 mmol/kg) itself caused only minor lipid peroxidation and injury to the liver within 1 h. When FeSO4 was administered before allyl alcohol, lipid peroxidation and liver injury were potentiated 50-100-fold. Pretreatment with DL-tocopherol acetate 5 h before allyl alcohol protected dose-dependently against allyl alcohol-induced lipid peroxidation and liver injury in vivo. Products of allyl alcohol metabolism, i.e. NADH and acrolein, both mobilized trace amounts of iron from ferritin in vitro. Catalytic concentrations of FMN greatly facilitated the NADH-induced reductive release of ferritin-bound iron. NADH effectively reduced ferric iron in solution. Consequently, a mixture of NADH and Fe3+ or NADH and ferritin induced lipid peroxidation in mouse liver microsomes in vitro. Our results suggest that the reductive stress (excessive NADH formation) during allyl alcohol metabolism can release ferrous iron from ferritin and can reduce chelated ferric iron. These findings provide a rationale for the strict iron-dependency of allyl alcohol-induced lipid peroxidation and hepatotoxicity in mice in vivo and document iron mobilization and reduction as one of several essential steps in the pathogenesis.  相似文献   

10.
Iron uptake studies in Bifidobacterium bifidum var. pennsylvanicus were carried out using ferric citrate at iron concentrations above 0.01 mM and pH 7, ferrous iron at concentrations less than 0.01 mM at pH 5. Two ferric iron transport systems were distinguished: the temperature-insensitive polymer, and the temperature-sensitive monomer uptake. Both showed a saturation phenomenon. The transport of ferrous iron at concentrations below 0.01 mM was temperature-dependent, and its affinity for iron was higher than that of a system operating at iron concentrations higher than 0.01 mM. The use of various metabolic inhibitors indicated that ferrous iron transport at pH 5 at both high and low iron concentrations was mediated by transport-type ATPase. Proton gradient dissipators abolished ferrous iron uptakes as well as the ferric monomer uptake. Uptake of the ferric polymer was insensitive to metabolic inhibitors. The functional significance of the various types of iron transport systems may be related to the nutritional immunity phenomenon.  相似文献   

11.
The importance of metal chelation in the mechanism of microsomal lipid peroxidation has been studied using both phosphate- and sulfhydryl-containing compounds. The optimal concentration for maximum stimulation by each of these compounds has been determined, and the decrease in stimulation observe at concentrations above the maxima has been related to the ability of these compounds to form stable chelation complexes with non-heme iron. Of the compounds tested, only ADP and ATP facilitated the cooperative binding of NADPH to the membrane and thus suggested the possibility of three binding sites for NADPH. Neither of the other two phosphate-chelating agents (Pi or PPi) and neither of the two thiols (cysteine or dithiothreitol)facilitated cooperative binding of NADPH. These data suggested that the adenine ring of ADP or ATP is directly involved in the cooperativity of NADPH binding. They also emphasized that the binding of the chelation complex to the protein is an important parameter in the mechanism of the NADPH-catalyzed peroxidation of endogenous microsomal lipids. Furthermore, stimulation of the rat of lipid peroxidation by sulhydryl-containing compounds, by freezing thawing the microsomal protein, and by treatment of the protein with detergent may be due to a decrease in this cooperative binding effect. Since cysteine and deoxycholate as well as freezing and thawing alter membrane structure, the stimulation of lipid peroxidation seems to involve some alteration to the structure of the microsomal membrane prior to the onset of enzymatic lipid peroxidation.  相似文献   

12.
The kinetics of iron binding by deferrioxamine B mesylate and the ramifications of this process upon iron-catalyzed lipid peroxidation were assessed. The relative rates of Fe(III) binding by deferrioxamine varied for the chelators tested as follows: ADP greater than AMP greater than citrate greater than histidine greater than EDTA. The addition of a fivefold molar excess of deferrioxamine to that of Fe(III) did not result in complete binding (within 10 min) for any of the Fe(III) chelates tested except ADP:Fe(III). The rates of Fe(III) binding by deferrioxamine were greater at lower pH and when the competing chelator concentration was high in relationship to iron. The relatively slow binding of Fe(III) by deferrioxamine also affected lipid peroxidation, an iron-dependent process. The addition of deferrioxamine to an ascorbate- and ADP:Fe(III)-dependent lipid peroxidation system resulted in a time-dependent inhibition or stimulation of malondialdehyde formation (i.e., lipid peroxidation), depending on the ratio of deferrioxamine to iron. Converse to Fe(III), the rates of Fe(II) binding by deferrioxamine from the chelators tested above were rapid and complete (within 1 min), and resulted in the oxidation of Fe(II) to Fe(III). Lipid peroxidation dependent on Fe(II) autoxidation was stimulated by the addition of deferrioxamine. Malondialdehyde formation in this system was inhibited by the addition of catalase, and a similar extent of lipid peroxidation was achieved by substituting hydrogen peroxide for deferrioxamine. Collectively, these results suggest that the kinetics of Fe(III) binding by deferrioxamine is a slow, variable process, whereas Fe(II) binding is considerably faster. The binding of either valence of iron by deferrioxamine may result in variable effects on iron-catalyzed processes, such as lipid peroxidation, either via slow binding of Fe(III) or the rapid binding of Fe(II) with concomitant Fe(II) oxidation.  相似文献   

13.
Oxidation of linoleic acid (LA) in tetradecyltrimethylammonium bromide micelles was induced by ferrous- and ferric-chelates in the presence of linoleic acid hydroperoxide (LOOH). Ferrous-chelates also induced lipid peroxidation in the presence of H2O2, but ferric-chelates did not, thought they could generate OH-radicals in the presence of H2O2, resulting in deoxyribose degradation. Of the chelators tested, nitrilotriacetic acid (NTA) chelated with iron showed the highest activity for induction of H2O2- and LOOH-dependent lipid peroxidations and H2O2-dependent deoxyribose degradation. NTA with ferrous ion, but not with ferric ion, also initiated oxidation of LA after a short lag period in the absence of peroxides such as H2O2 and LOOH, but other chelators with ferrous ion did not. The peroxide-independent lipid peroxidation and associated oxidation of ferrous-NTA to ferric-NTA progressed in two steps: an induction step in a lag period and then a propagation step. Ferrous ion complexed with NTA was autoxidized pH-dependently and synchronously with oxygen uptake. The rates of both reactions increased with increase of pH, but were not related to the length of the lag period, which was also dependent on pH, and was shortest at pH 4.2. The EPR spectrum of the ferric-NTA complex prepared directly from ferric salt was different from that of the complex prepared from ferrous salt, confirming that some ferric-type active oxygen participated in induction of peroxide-independent lipid peroxidation. From these results, we propose a possible mechanism of lipid peroxidation induced by ferrous-NTA without peroxides. The finding that iron-NTA had the highest activity for induction of the oxidations of LA and deoxyribose is discussed in relation to the carcinogenic and nephrotoxic effects of this chelating agent.  相似文献   

14.
A certain iron chelate, ferric nitrilotriacetate (Fe3+-NTA) is nephrotoxic and also carcinogenic to the kidney in mice and rats, a distinguishing feature not shared by other iron chelates tested so far. Iron-promoted lipid peroxidation is thought to be responsible for the initial events. We examined its ability to initiate lipid peroxidation in vitro in comparison with that of other ferric chelates. Chelation of Fe2+ by nitrilotriacetate (NTA) enhanced the autoxidation of Fe2+. In the presence of Fe2+-NTA, lipid peroxidation occurred as measured by the formation of conjugated diene in detergent-dispersed linoleate micelles, and by the formation of thiobarbituric acid-reactive substances in the liposomes of rat liver microsomal lipids. Addition of ascorbic acid to Fe3+-NTA solution promoted dose-dependent consumption of dissolved oxygen, which indicates temporary reduction of iron. On reduction, Fe3+-NTA initiated lipid peroxidation both in the linoleate micelles and in the liposomes. Fe3+-NTA also initiated NADPH-dependent lipid peroxidation in rat liver microsomes. Although other chelators used (deferoxamine, EDTA, diethylenetriaminepentaacetic acid, ADP) enhanced autoxidation, reduction by ascorbic acid, or in vitro lipid peroxidation of linoleate micelles or liposomal lipids, NTA was the sole chelator that enhanced all the reactions.  相似文献   

15.
A crystal field analysis of EPR data for various low spin ferric cytochromes P-450 suggests that in all of them, regardless of source or method of induction, the heme ligands are a sulfur atom, presumably from cysteine, and an imidazole from histidine. The imidazole can be displaced in the ferric protein by cyanide, guanidine, or by an amine, analogous to its displacement by CO or NO in the ferrous protein. The resulting changes in the EPR parameters for the ferric protein are consistent with similar substitutions in heme thiol model compounds. The analysis of the latter can be understood on the basis of alterations of the electronic structure of the ligands to the heme iron.  相似文献   

16.
A purified preparation of rat liver microsomal NADPH-cytochrome c reductase has been shown to catalyze the NADPH-dependent peroxidation of isolated microsomal lipid. In addition to ADP and ferric ion required for NADPH-dependent lipid peroxidation in whole microsomes, this system requires high ionic strength and a critical concentration of EDTA. The peroxidation activity can be inhibited by superoxide dismutase suggesting that the superoxide anion, produced by this flavoprotein, is involved in the lipid peroxidation reaction.  相似文献   

17.
NADPH-dependent lipid peroxidation occurs in two distinct sequential radical steps. The first step, initiation, is the ADP-perferryl ion-catalyzed formation of low levels of lipid hydroperoxides. The second step, propagation, is the iron-catalyzed breakdown of lipid hydroperoxides formed during initiation generating reactive intermediates and products characteristic of lipid peroxidation. Propagation results in the rapid formation of thiobarbituric acid-reactive material and lipid hydroperoxides. Propagation can be catalyzed by ethylenediamine tetraacetate-chelated ferrous ion, diethylenetriamine pentaacetic acid-chelated ferrous ion, or by ferric cytochrome P-450. However, cytochrome P-450 is destroyed during propagation.  相似文献   

18.
The redox cycle of 2,5-dimethoxybenzoquinone (2,5-DMBQ) is proposed as a source of reducing equivalent for the regeneration of Fe2+ and H2O2 in brown rot fungal decay of wood. Oxalate has also been proposed to be the physiological iron reductant. We characterized the effect of pH and oxalate on the 2,5-DMBQ-driven Fenton chemistry and on Fe3+ reduction and oxidation. Hydroxyl radical formation was assessed by lipid peroxidation. We found that hydroquinone (2,5-DMHQ) is very stable in the absence of iron at pH 2 to 4, the pH of degraded wood. 2,5-DMHQ readily reduces Fe3+ at a rate constant of 4.5 x 10(3) M(-1)s(-1) at pH 4.0. Fe2+ is also very stable at a low pH. H2O2 generation results from the autoxidation of the semiquinone radical and was observed only when 2,5-DMHQ was incubated with Fe3+. Consistent with this conclusion, lipid peroxidation occurred only in incubation mixtures containing both 2,5-DMHQ and Fe3+. Catalase and hydroxyl radical scavengers were effective inhibitors of lipid peroxidation, whereas superoxide dismutase caused no inhibition. At a low concentration of oxalate (50 micro M), ferric ion reduction and lipid peroxidation are enhanced. Thus, the enhancement of both ferric ion reduction and lipid peroxidation may be due to oxalate increasing the solubility of the ferric ion. Increasing the oxalate concentration such that the oxalate/ferric ion ratio favored formation of the 2:1 and 3:1 complexes resulted in inhibition of iron reduction and lipid peroxidation. Our results confirm that hydroxyl radical formation occurs via the 2,5-DMBQ redox cycle.  相似文献   

19.
In order to probe the active site of the heme protein indoleamine 2,3-dioxygenase, magnetic and natural circular dichroism (MCD and CD) and electron paramagnetic resonance (EPR) studies of the substrate (L-tryptophan)-free and substrate-bound enzyme with and without various exogenous ligands have been carried out. The MCD spectra of the ferric and ferrous derivatives are similar to those of the analogous myoglobin and horseradish peroxidase species. This provides strong support for histidine imidazole as the fifth ligand to the heme iron of indoleamine 2,3-dioxygenase. The substrate-free native ferric enzyme exhibits predominantly high-spin EPR signals (g perpendicular = 6, g parallel = 2) along with weak low-spin signals (g perpendicular = 2.86, 2.28, 1.60); similar EPR, spin-state and MCD features are found for the benzimidazole adduct of ferric myoglobin. This suggests that the substrate-free ferric enzyme has a sterically hindered histidine imidazole nitrogen donor sixth ligand. Upon substrate binding, noticeable MCD and EPR spectral changes are detected that are indicative of an increased low spin content (from 30 to over 70% at ambient temperature). Concomitantly, new low spin EPR signals (g = 2.53, 2.18, 1.86) and MCD features characteristic of hydroxide complexes of histidine-ligated heme proteins appear. For almost all of the other ferric and ferrous derivatives, only small substrate effects are observed with MCD spectroscopy, while substantial substrate effects are seen with CD spectroscopy. Thus, changes in the heme coordination structure of the ferric enzyme and in the protein conformation at the active site of the ferric and ferrous enzyme are induced by substrate binding. The observed substrate effects on the ferric enzyme may correlate with the previously observed kinetic substrate inhibition of indoleamine 2,3-dioxygenase activity, while such effects on the ferrous enzyme suggest the possibility that the substrate is activated during turnover.  相似文献   

20.
Chlorite dismutase (EC 1.13.11.49), an enzyme capable of reducing chlorite to chloride while producing molecular oxygen, has been characterized using EPR and optical spectroscopy. The EPR spectrum of GR-1 chlorite dismutase shows two different high-spin ferric heme species, which we have designated 'narrow' (gx,y,z = 6.24, 5.42, 2.00) and 'broad' (gz,y,x = 6.70, 5.02, 2.00). Spectroscopic evidence is presented for a proximal histidine co-ordinating the heme iron center of the enzyme. The UV/visible spectrum of the ferrous enzyme and EPR spectra of the ferric hydroxide and imidazole adducts are characteristic of a heme protein with an axial histidine co-ordinating the iron. Furthermore, the substrate analogs nitrite and hydrogen peroxide have been found to bind to ferric chlorite dismutase. EPR spectroscopy of the hydrogen peroxide adduct shows the loss of both high-spin and low-spin ferric signals and the appearance of a sharp radical signal. The NO adduct of the ferrous enzyme exhibits a low-spin EPR signal typical of a five-co-ordinate heme iron nitrosyl adduct. It seems that the bond between the proximal histidine and the iron is weak and can be broken upon binding of NO. The midpoint potential, Em(Fe3+/2+) = -23 mV, of chlorite dismutase is higher than for most heme enzymes. The spectroscopic features and redox properties of chlorite dismutase are more similar to the gas-sensing hemoproteins, such as guanylate cyclase and the globins, than to the heme enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号