首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of awns doubled the net photosynthetic rate of wheat ears and also increased the proportion of 14CO2 assimilated by the ear that moved to the grain. The effect of water supply on photosynthesis and movement of assimilates was greater for leaves than ears, so that drought increased the proportion of assimilate contributed by ear photosynthesis to grain filling from 13% to 24% in the awnless ears, and from 34% to 43% in the awned ears. 14C assimilated by the ears was most important to the economy of the upper spikelets and to the distal florets in each spikelet, whereas flag leaf assimilate went mainly to the spikelets in the lower half of the ear, and to the proximal florets. Awns increased grain yield in the dry but not in the irrigated treatment, despite the large contribution of awned ears to grain filling. Either the supply of assimilate did not limit grain yield when water supply was not limiting, or there were compensating disadvantages to awns. However, they did not seem to have any adverse effect on the development of the upper florets, nor did they reduce grain number per ear.  相似文献   

2.
A Study of Floret Development in Wheat (Triticum aestivum L.)   总被引:1,自引:0,他引:1  
Plants of wheat (Triticum aestlvum L.) cv. Aotea were grownat high or low nitrogen levels and in a natural photoperiodor continuous light. Starting 17–21 days from the double-ridgestage, eight plants from each treatment were sampled every 3days until anthesis, and the two basal, the sixth, and the terminalspikelets were sectioned longitudinally. A developmental scorewas assigned to each floret and rates of development calculated.Continuous light hastened development but reduced the numberof spikelets per ear, while high nitrogen delayed developmentbut increased spikelet numbers. The number of florets initiatedin each spikelet varied within narrow limits, but grain settingdepended strongly on spikelet position and on treatment. Althoughflorets were initiated in acropetal succession, the rate ofdevelopment tended to increase up to floret 4 but then declinedmarkedly. As a result grain setting was confined to basal floretpositions, although the two basal spikelets developed so slowlythat they contributed relatively little to grain yield. Distalflorets degenerated almost simultaneously at or before ear emergence,but those in intermediate positions continued to develop untilafter fertilization in the lower florets. It is argued thatthe spikelet is an integrated system in which correlative mechanismsplay a part throughout the development of the florets.  相似文献   

3.
Wheat, variety Sonalika, was grown at different densities inboth field and pots during the winter seasons 1983–84and 1984–85. Grain yield pattern of the spikelets of themain shoot inflorescence was similar in both the field and pots,the spikelets in the middle part of the ear contributed mostand yield per spikelet decreased progressively towards the apexand the base. Increased population density decreased yield ofgrain, primarily by decreasing spikelet number and the fertilityof florets. High population density accelerated growth of thespike for some time during the pre-anthesis period and the solublecarbohydrate concentration was also higher under these conditions.During both anthesis and post-anthesis, the soluble carbohydrateconcentration and the growth of the spike declined much fasterin the high-density population. High density also decreasedthe floret fertility and growth in dry weight in all the spikelets,but it was more severe on the basal spikelets, resulting incomplete sterility of the florets at these nodes. The solublecarbohydrate concentration of these slow-growing, sterile, basalspikelets was found to be higher in comparison to that of fertilespikelets in the middle and top positions within the ear. Soluble carbohydrates, spike, spikelet, fertility, grain number  相似文献   

4.
Four low-latitude cultivars (two Mexican and two Rhodesian) and a Canadian cultivar were grown in controlled environments in four photo-periods, 16, 13, 10 and 7 h, respectively. Plants of two of the low-latitude cultivars were also transferred between long and short photoperiods during ear differentiation. The intervals from sowing to successive stages of ear development up to the formation of the terminal spikelet, and to ear emergence, and the number of leaves, all increased as photoperiod decreased. The Canadian cultivar responded most and one of the Rhodesian cultivars least to changes of photoperiod in these respects. However, with all the low-latitude cultivars, the interval between formation of the terminal spikelet and emergence of the ear responded similarly and relatively little to decreasing photoperiod except when photoperiod was reduced from 10 to 7 h. The mean rate of spikelet production decreased as the duration of the period of spikelet production (DSP) increased, i.e. as ear development slowed down with decrease in photoperiod. Accordingly number of spikelets per ear increased curvilinearly as DSP increased, suggesting a maximal number of spikelets of about thirty. Rate of spikelet production apparently differed between cultivars. Development of the ear slowed down when plants were moved to a shorter photoperiod and accelerated when they were moved to a longer photoperiod, both at the time at which the shoot apex began to elongate and at the double ridge stage. Final number of spikelets per ear increased when ear development was slowed down and decreased when it was accelerated.  相似文献   

5.
Variation in pollen production was measured within five hermaphrodite species of bromegrass (Bromus). Anther length is an excellent predictor of pollen production in this genus (R2 = 0.97). Anther length varied considerably within each of the species, both among and within individual plants. Within plants, most of the variation occurred among florets within spikelets; florets in upper spikelet positions were smaller and produced less pollen. In B. inermis, pollen production was decreased by defoliation and increased in shoots that grew on thatching ant (Formica obscuripes) mounds. Whole-shoot pollen yield was determined by spikelet number, number of florets per spikelet, and pollen production per floret. All of these yield components must be considered in attempts to estimate pollen production accurately.  相似文献   

6.
This paper describes the effects of sterilizing certain floretson the development of others within the ears of wheat, cultivarMaris Ranger. Sterilization of all the florets in spikelets2, 4, 6, and 8 (numbered from the base of the ear upwards) ledto more grain setting and greater grain growth in the untreatedspikelets. These compensatory increases were insufficient toprevent a depression in the yield of grain per ear. Sterilizationof more than one of the basal florets of spikelet 8 led to amore frequent setting of the grain in the distal florets onthat spikelet and to the centrally positioned grain becomingheavier. The physiological basis for the inhibitory influences of theolder and developing grain on the unfertilized florets and youngergrain is discussed.  相似文献   

7.
The effect of leaf removal either before or at floral initiationon times from sowing to floral initiation and from floral initiationto terminal spikelet initiation, spikelet number per ear, andrate of spikelet initiation investigated in six spring wheatsunder controlled environment conditions. Defoliation delayed the times to floral and terminal spikeletinitiations significently in all varieties. However, defoliationincreased the number of spikelets per ear in the varieties 8–23,8–27 and Selkirk (up to 43 per cent in 8–27 comparedwith the control) but decreased the number in Triple Dirk, Sunsetand Kogat (up to 28 per cent in Triple Dirk). Although the rateof spikelet initiation apparently decreased in all varieties,dissection at regular intervals of Sunset and 8–23 plantsthowed that the rate dropped sharply just after defoliationin both varieties, but later the rate in 8–23 (but notin Sunset) surpassed that of the control plants. The possiblemechanism of control of spikelet number in wheat is discussed.  相似文献   

8.
Effects of exogenous hormones on floret development and grain setin wheat   总被引:1,自引:0,他引:1  
At specific stages during floret development, solutions of IAA,GA3, zeatin and ABA were injected into the leaf sheath around theyoung spike of wheat (Triticum aestivum L.) to study theregulating effects of exogenous hormones on floret development. Zeatin promotedfloret development and significantly increased the number of fertile florets aswell as grain set, especially at the stage of anther-lobe formation. Zeatinalsoincreased the sugar concentrations in spikes at anthesis. In contrast, IAA,GA3 and ABA inhibited floret development, with different patternsforeach of the hormones. IAA inhibited the development of the whole spike and allflorets in the spikelets such that grain loss occurred in all positions in thespikelets. GA3 increased the number of fertile florets per spike,butdecreased grain set of the third floret in each spikelet, especially whenapplied at terminal spikelet formation. ABA inhibited floret development, anddecreased the number of fertile florets and grain set at almost all developmentstages, except at anther-lobe formation. The inhibitory effect of ABA wasmainlyon the first and third florets in each spikelet.  相似文献   

9.
The number and developmental stages of florets were determinedin each spikelet of the spike in the main shoots of spring wheat.Samples were taken frequently from plants grown in a phytotronand in a nitrogen application field-test. Ten stages of development,from floret initiation until anthesis, were recognized and described. Inter-spikelet variation in the total number of initiated floretswas rather small. However, the number of florets at advancedstages of development, as well as the number of grains, washighest in the central spikelets in which florets initiatedfirst. Floret initiation did not proceed beyond spike emergence,whereafter the distal florets and the spikelet apex degenerated.Grain-set was restricted to florets which had developed at leastto the stage of visible anther lobes at spike emergence. Thenumber of these florets was increased significantly by nitrogenapplication. Wheat, Triticum aestivum L., spikelet, floret, grain set, nitrogen  相似文献   

10.
In the supernumerary spikelet wheat, AUS159I0, the supernumeraryspikelet primordia appeared just after the ear reached the terminalspikelet stage. Appearance of the primordia of the multiplesessile spikelets preceded that of indeterminate rachilla spikelets.Supernumerary spikelets had a lower number of potentially fertileflorets per spikelet than normal (non-supernumerary) spikeletsin the ear and thus a smaller number of grains per spikelet.Mean weight per grain in the supernumerary spikelet wheat waslower than in the cultivar, Meering, without supernumerary spikelets.Total grain number in the supernumerary spikelet ear was greaterthan in the normal ear despite the lower spikelet fertilityin the former. Within the supernumerary spikelet ear the multiplesessile spikelets had a higher number of grains per spikeletand mean weight per grain than the indeterminate rachilla spikelets.It appears possible to improve the productivity of the supernumeraryspikelet ear by breeding for reduced expression of the indeterminaterachilla spikelets. Wheat, ear development, floret survival, supernumerary spikelets, grain number  相似文献   

11.
对小麦顶生小穗的初步研究   总被引:1,自引:0,他引:1  
1.顶生小穗的护颖具有特殊的形态,第二护颖常为小花外稃状,腋内有时还保留着雌雄蕊或内稃残余。说明其不稳定和可变的本质。2.顶生小穗具特殊的坐落位置,其小穗轴与主穗轴一致。顶生小穗原始体发生在穗生长锥顶端,其下无苞原始体,长成后也无小穗领。其护颖和小花外稃与侧生小穗下的小穗领呈严格连续互生状态。说明其一次轴的渊源。3.顶生小穗护颖腋内可长出小穗,小花也可代之以小穗,护颖和小花外稃有时以苞片的形式保留于新侧生小穗外侧。新顶生小穗的护颖来自小花外稃。说明顶生小穗护颖腋内的退化花芽、外稃腋内的小花与侧生小穗都是花序一次轴上的二次轴分枝。4.顶生小穗产生小穗的变异严格按自下而上的顺序进行,与原侧生小穗有严格的连续性。5.事实证明,顶生小穗是一次轴花序,它属于穗状花序顶端的可变部分。  相似文献   

12.
Decapitation induced an additional formation of secondary shoots and anomalous spikes in all the species. The moan numbers of nodes, spikelets per spike, seeds per spikelet and spike, and the mean length of the stem and spike were reduced on secondary shoots of decapitated plants, while the mean and peak numbers of flowers per spikelet and the peak number of seeds per spikelet increased. The increase in the number of flowers per spikelet was the most striking on spike base; the seeds regularly occurred even in spikelets with an expressively increased number of flowers. The post-decapitation changes of the spike could be well expressed quantitatively according to the increased mean number of the flowers per one seed. Morphological ohanges in anomalous spikes of all the wheat species resemble phylogenetic reversions described in literature. Moreover, the peak numbers of flowers and seeds per spikelet were recorded in 52 varieties belonging to 21 wheat species. As compared with the decapitation trial, the greatest variability and the greatest differences between the speoies were also reoorded in the tetraploid group, and the smallest variability and differences between the species in the diploid group. We suppose that the striking morphological differences in post-decapitation spikes take place because the apical dominance was interrupted before differentiation of the recent form had been controlled in meristems on the decapitated stem base. Ancestral forms were morphologically realized with the help of an assimilating part of the decapitated stem.  相似文献   

13.
The pattern of seed abortion was followed in each floret offour centrally positioned spikelets in inflorescences of L.perenne from field plots given zero ( –F) or 150 kg Nh1 ( + F). There was severe lodging prior to anthesisin the +F plots and control inflorescences were compared withthose held in an erect position and with others reduced to fourcentral spikelets. In the - F plots there was only very limitedlodging and erect control inflorescences were compared withthose reduced to four central spikelets. Observations were madeover a 3-week period and the pattern of seed abortion was verysimilar in all of the treatments. Approximately half of thedeveloping seeds in each spikelet were lost by abortion andthere was a similar degree of loss from all florets. The numberof abortions increased greatly with time and approx. one-thirdwere of ovaries and two-thirds were of seeds at a very earlystage of development (1–2 mm in length and without chlorophyllformation). The effect of nitrogen fertilizer was to increaseboth the number of florets per spikelet and the mean weightper seed. The results are discussed in terms of the availabilityof resources to sustain seed development and growth; it is concludedthat the high degree of abortion may be due to genetic defectsassociated with outbreeding rather than with a shortage of nutritionalfactors  相似文献   

14.
Yield studies show that increases in grain yield are always accompanied by an increase in grain number and, hence, further increases in yield potential may require additional improvements in grain number. The improvement of modern durum wheat was mainly based on the introduction of semidwarf genes. A 2‐year field drought stress experiment, concerning two different genotype groups (landraces vs modern cultivars), was carried out under a rainout shelter in order (a) to assess the effect of water deficit on floret dynamics and grain number determination, (b) to explore the relationship between plant water status with grain number per spike and its components (i.e., spikelets per spike, fertile florets per spikelet and grain set) and (c) to quantify the importance of several plant traits in determining the final number of grains per spike and fertile florets per spike when the main source of variation is water availability. Compared to control (well irrigated), grain number per spike was reduced, depending on year, genotype and water availability level, by 12.4–58.7% and this reduction was evident almost in all spikelet positions along the spike. Although there were some doubts in the past about the increased sensitivity of semidwarf cultivars to drought stress, they were not confirmed from our results. In most of the cases, the variation in plant water status (by means of water potential index [WPI]) during floret primordia phase (FPP) explained most of the variance in grain number per spike, fertile florets per spikelet, grain set and fertile spikelets per spike. In general, increasing water stress intensity decreased grain number per spike by an average rate of 13.5 and 9.4 grains per 0.2 MPa decrease in WPI, in modern cultivars and landraces, respectively. However, seasonal and genotypic effects were evident by modifying the slopes of the linear regressions between WPI and the studied plant traits. Commonality analysis revealed that the number of fertile florets per spikelet was the best predictor of grain number per spike, indicating that there is still much space for further improvement for this trait in landraces. However, this trait has been clearly improved in modern cultivars, especially at the basal and central spikelets. Although the number of spikelets per spike was the best unique predictor of the number of grains per spike in modern cultivars, grain set presented the highest total effect.  相似文献   

15.
Distribution of carbon-14 assimilated by wheat awns   总被引:1,自引:0,他引:1  
The pattern of distribution of carbon assimilated by awns was investigated in two lines of Triticum aestivum. Single awns on basal florets of spikelets in the central part of the ear were dosed with 14CO2. Five days after dosing, 99% of the carbon-14 recovered was in the spikelet bearing the awn. Of the carbon-14 exported from the treated awn 57% went to the grain of the first floret, 1% to the second, 28% to the third and 7% to the fourth.  相似文献   

16.
The fate of 100 seedling plants of Lolium perenne L. was studied over a period of 2 years in a field plot. The birth and death of tillers and the production of inflorescences was followed, and the components of seed yield were recorded in detail in the first year. The pattern of distribution of 14CO2 assimilated by the main shoot was examined at monthly intervals and during the first flowering season the distribution of 14C-assimilate from individual leaves and from the inflorescence was also studied. The capacity of individual tillers to assimilate 14CO2 prior to flowering and the re-distribution of previously accumulated assimilate during seed growth were also assessed. Plants died at a more or less constant rate with time and only 54 survived to the end of the 2–yr period. First year mortality was associated with severe grazing or cutting but in the second year the death of ungrazed plants was observed. There was great variability in the production of tillers by surviving plants. In both years the number of live tillers per plant increased from July to the end of April with particularly rapid tillering in March and April establishing the maximum value for each year. There was a similar phase of rapid tillering after flowering in July. The number of live tillers per plant declined by 50% during stem elongation and inflorescence emergence and the majority of dead tillers were young secondary (in the first year) and tertiary (in the second year) tillers with a mean age of 40 days. Such tillers had poor assimilatory capacity prior to the onset of death and were not supplied with assimilate from the main shoot. Most of the plants surviving at the end of the experiment flowered in both years and one quarter of the maximum number of live tillers per plant recorded in April of each year produced inflorescences. The earlier a tiller was produced the greater was its chance of flowering and the greater its production of seed. The greater weight of seed produced was associated with the development of more seed-bearing florets per spikelet. There was relatively little export of “C-assimilate from the flowering main shoot, and the lower internodes formed the major sink for post-anthesis assimilate. The growth of seeds appeared to be relatively independent of the leaves for current assimilate. There was some evidence that assimilate accumulated in lower internodes was remobilised and utilised in the growth of seeds and new tillers. Overall, the results confirm the view that the grass plant is a dynamic population of short-lived tillers and indicate that increasing competition for assimilate at flowering exerts a major influence on the production and survival of tillers.  相似文献   

17.
选用千粒重大小不同的小麦品种,研究了去除顶端两个小穗对两类品种(大粒品种和小粒品种)千粒重、穗粒数、穗粒重、籽粒平均灌浆速率、单穗平均增重速率、植株光合速率及14C同化物运转分配的影响。试验结果表明,去除顶端两个小穗后,两类品种的千粒重提高,穗粒数降低或基本不受影响,但降低比例明显低于去除小穗数的比例。籽粒平均灌浆速率和单穗平均增重速率(分别表征籽粒库容活性和穗粒库容活性)相应提高。结果,两类品种的穗粒重表现为补偿性增长。两类品种比较,小粒品种的增长幅度大于大粒品种。穗粒库容活性增强使得小粒品种灌浆中后期的植株光合速率提高,使两类品种分配到籽粒中的14C同化物比例增加。从而表明,无论是植株光合速率还是同化物的运转分配皆受穗粒库容活性的调控,调控方式和幅度因品种类型而不同。但提高其穗粒重的着眼点都应当是提高穗粒库容活性。  相似文献   

18.
In a field experiment, comprising four spring wheat cultivars,the frequency and final weight of the grains developing fromeach individual floret were determined in intact spikes andin spikes of which up to nine spikelets had been removed. Theextent of damage caused by the cutting procedure was estimated. Characteristic distributions of the frequencies and weightsof the individual grains were found for each cultivar. Removalof spikelets resulted, in most cases, in a small increase inthe number of grains and in a considerable increase in the weightof the grains of the remaining spikelets. These increases compensatedonly partially, and differently in the different cultivars,for the loss of the removed spikelets. Defoliation at the timeof earing caused a subsequent reduction in grain yield of intactspikes but no reduction in the yield of spikes from which ninespikelets had been removed. The removal of the upper floretsin each spikelet resulted in a certain increase in the weightof the two basal grains. It is concluded that an increase in the number of spikeletsper spike may reduce grain weight but will nevertheless contributeto yield. The number of grains per spikelet is cultivar dependentbut not causally associated with grain weight. Grain set indistal florets is expected to add rather small grains to thespike's yield. Under conditions of limited supplies it may causea reduction in the weight of the basal grains. Any increasein grain weight is anticipated to contribute to grain yieldand is not liable to affect spikelets per spike or grains perspikelet. Wheat cultivars, Triticum aestivum, growth of inflorescence, grain yield, spikelet number  相似文献   

19.
Aegilops Kotschyi Boiss. plants produce three florets per spikelet(of which the terminal floret is commonly sterile) and exhibitphysiological heterocarpy in the two caryopses which developin each spikelet. Germinability of the basal caryopsis, butnot of the upper one, was subject to environmental influencesto which the parent plant was exposed during its development.Basal caryopses produced by plants grown at low temperature,or in 16-h photoperiods, were more dormant than when producedby plants grown at higher temperature, or in 8-h photo-periods.Germinability of the upper caryopses was equally high in allcases and independent of the parental environment. The photoperiodeffects on germinability were exerted after anthesis. Matureweight of both basal and upper caryopses was higher when producedon plants grown at low temperature, or transferred from 16-hto 8-h photopenods at emergence of the flag leaf  相似文献   

20.
Grain number in the wheat cultivar Banks was reduced by up to11 % with a rise in temperature from 21/16 °C to 30/25 °Cover a 10-d period immediately following first anthesis in general,the upper ‘d’ and ‘c’ florets were moreaffected by high temperature than the basal ‘a’and ‘b’ florets within a spikelet and florets fromthe upper spikelets were more sensitive than those lower onthe ear Grain weight and grain length at maturity were most affectedby a 10 d period of high temperature commencing 7–10 dafter anthesis However, if dry-matter accumulation between thestart of a treatment and grain maturity was used as a base forcomparison, the response was more uniform throughout development,with a peak in sensitivity 25 d after anthesis Although grainposition within an ear did not have a large effect on the responseto temperature, grains from the basal spikelets were more sensitivethan those from the apex, and the upper floret grains of a spikeletwere more sensitive to high temperature than those at the base There is a need to obtain, for a range of cultivars, more comprehensivedata on the effect of the timing and degree of temperature stressfollowing anthesis, for use in interpreting the response torising temperatures late in the development of the crop in thefield Triticum aestivum L, wheat, temperature, grain development  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号