首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. Gophen 《Hydrobiologia》1984,113(1):249-258
Monthly averages of standing stock wet biomass of zooplankton in Lake Kinneret (Israel) varied between 11 and 76 g m–2 during 1969–1981, with the exception of two months. Averaged contributions of different groups were: Cladocera 58%, Copepoda 35% and Rotifera 7%. Total standing crop wet biomass is highest during January–June, averages varied between 35 and 50 g m–2, and decreases during summer–fall (23–36 g m–2). The winter biomass of Cladocera fluctuated between 22 and 35 g m–2 and dropped to a range of 9–23 g m–2 in summer, whereas copepod biomass varied very little around an average of 18 g (ww) m–2 with the exception of low values from April to June. The stock biomass of Rotifera is relatively high during winter floods season (December-March) whilst in summer it is very low.Young stages of fish in Lake Kinneret feed mostly on zooplankton and zoobenthic forms. The most abundant fish in the Kinneret ecosystem, Mirogrex terraesanctae terraesanctae, also feed on zooplankton at the adult stage throughout the year, and herbivorous fish consume zooplankton during the summer when lake plankton resources are limited.The summer ecosystem of Lake Kinneret is characterised as a steady state type, in which the impact of the zooplankton-chain is of great importance. Increase of predation pressure on zooplankton by fish can disequilibrate the balanced trophic relations existing between nannoplankton production and zooplankton grazing capacity. Such a situation can lead to organics accumulation as nannoplankton blooms, resulting in water quality deterioration. Management options aimed at preventing collapse of zooplankton populations are discussed.  相似文献   

2.
Impact of cyprinids on zooplankton and algae in ten drainable ponds   总被引:4,自引:4,他引:0  
To study the impact of cyprinids on algae, zooplankton and physical and chemical water quality, ten drainable ponds of 0.1 ha (depth 1.3 m) were each divided into two equal parts. One half of each pond was stocked with 0 + cyprinids (bream, carp and roach of 10–15 mm), the other was free of fish. The average biomass of the 0 + fish at draining of the ponds was 466 kg ha–1, to which carp contributed about 80%.The fish and non-fish compartments showed significant differences. In the non-fish compartments the density of Daphnia hyalina was 10–30 ind. l–1 and that of Daphnia magna 2–4 ind. l-–1, whereas in the fish compartments densities were c. 1 ind. l–1. Cyclopoid copepods and Bosmina longirostris, however, showed higher densities in the fish compartments. The composition of algae in the two compartments differed only slightly, but the densities were lower in the non-fish compartments. The significant difference in turbidity was probably caused by resuspension of sediment by carp. No significant difference in nutrient concentration between the compartments was found.  相似文献   

3.
Nocturnal near-reef zooplankton from the forereef of Discovery Bay, Jamaica, were sampled during winter and summer 1994 using a diver-operated plankton pump with an intake head positioned within centimeters of benthic zooplanktivores. The pump collected zooplankton not effectively sampled by conventional net tows or demersal traps. We found consistently greater densities of zooplankton than did earlier studies that used other sampling methods in similar locations. There was no significant difference between winter (3491±578 m–3) and summer (2853±293 m–3) zooplankton densities. Both oceanic- and reef-associated forms were found at temporal and spatial scales relevant to benthic suspension feeders. Copepods were always the most abundant group, averaging 89% of the total zooplankton, and most were not of demersal origin. The cyclopoids, Oithona spp., were the numerically dominant organisms, with an average density of 1684±260 m–3. Other zooplankton (e.g., shrimp larvae, crab larvae, polychaetes, chaetognaths, amphipods, and isopods) were highly variable and much less abundant. Near-reef zooplankton abundances were high throughout the night sampling period, not just after sunset and before sunrise as previously described. Mean biomass was 4.5 mg C m–3, with values ranging from 1.0 to 15.6 mg C m–3. This work has important implications for evaluating which zooplankton types are available to benthic suspension feeders, including corals.  相似文献   

4.
About 650 zooplankton samples were collected from Lake Inarijärvi in 1977–1979 from the littoral and pelagial zones of the lake. One hundred and twenty-three zooplankton taxa were found and most of them can be considered euplanktonic.The most important species were Holopedium gibberum, Daphnia cristata, Cyclops spp. and Eudiaptomus spp. Mean pelagial zooplankton biomass was 0.29 g m–3 in the 0–5 m depth zone, 0.17 g m–3 in 5–10 m and 0.11 g m–3 in 10–20 m.The zooplankton biomass at a sandy shore was about 0.09 g m–3, at a stony shore 0.05 g m–3 and at a vegetated shore 0.76 g m–3. About 70% of the whole zooplankton production consisted of crustaceans.The sum of herbivore and carnivore zooplankton production in the pelagial area during the summer was 210–330 kg ha–1 × 3 months.  相似文献   

5.
The influence of zooplanktivorous fishes on the plankton community and water quality of Americana Reservoir, Brazil was studied experimentally in 4 floating enclosures during the dry seasons (July–September) of 1982 and 1983. Two enclosures were stocked with adult fish (Astyanax bimaculatus in 1982;A. fasciatus in 1983) at near maximal densities measured in the reservoir upper surface waters (35 m–2) and two were fish-free during each experiment lasting about one month. Marked differences were evident between the fish and fish-free enclosures after a 2–3 week period in each experiment, particularly with respect to water transparency, phytoplankton biomass, and zooplankton abundance as well as species and size composition. By the end of each experiment water transparencies were lower and phytoplankton biomass higher in the fish enclosures compared to those without fish. Also at that time Rotifera were the prominent zooplankters in the fish enclosures and Cladocera in the fish-free ones. Larger or more conspicuous species of Cladocera asDaphnia gessneri, D. ambigua, andMoina micrura were present in the fish-free enclosures but not in the fish enclosures. The interactions between fish predation, zooplankton grazing, phytoplankton biomass and water quality conditions are discussed in relation to eutrophication of a tropical aquatic ecosystem.  相似文献   

6.
Primary production of phytoplankton and secondary production of a daphnid and a chaoborid were studied in a small eutrophic pond. The gross primary production of phytoplankton was 290 gC m−2 per 9 months during April–December. Regression analysis showed that the gross primary production was related to the incident solar radiation and the chlorophylla concentration and not to either total phosphorus or total inorganic nitrogen concentration. The mean chlorophylla concentration (14.2 mg m−3), however, was about half the expected value upon phosphorus loading of this pond. The mean zooplankton biomass was 1.60 g dry weight m−2, of whichDaphnia rosea and cyclopoid copepods amounted to 0.69 g dry weight m−2 and 0.61 g dry weight m−2, respectively. The production ofD. rosea was high during May–July and October and the level for the whole 9 months was 22.6 g dry weight m−2.Chaoborus flavicans produced 10 complete and one incomplete cohorts per year. Two consecutive cohorts overlapped during the growing season. The maximum density, the mean biomass, and the production were 19,100 m−2, 0.81 g dry weight m−2, and 11.7 g dry weight m−2yr−1, respectively. As no fish was present in this pond, the emerging biomass amounted to 69% of larval production. The production ofC. flavicans larvae was high in comparison with zooplankton production during August–September, when the larvae possibly fed not only on zooplankton but also algae.  相似文献   

7.
1. The impact of changes in submerged macrophyte abundance on fish-zooplankton-phytoplankton interactions was studied in eighteen large-scale (100 m2) enclosures in a shallow eutrophic take. The submerged macrophytes comprised Potamategon pectinatus L., P. pusillus L. and Callitriche hermaphroditica L. while the fish fry stock comprised three-spined sticklebacks, Gasterosteus acuteatus L., and roach, Rutilus rutilus L. 2. In the absence of macrophytes zooplankton biomass was low and dominated by cyclopoid copepods regardless of fish density, while the phytoplankton biovolume was high (up to 38 mm31) and dominated by small pennate diatoms and chlorococcales. When the lake volume infested by submerged macrophytes (PVI) exceeded 15–20% and the fish density was below a catch per unit effort (CPUE) of 10 (approx. 2 fry m?2), planktonic cladoceran biomass was high and dominated by relatively large-sized specimens, while the phytoplankton biovolume was low and dominated by small fast-growing flagellates. At higher fish densities, zooplankton biomass and average biomass of cladocerans decreased and a shift to cyclopoids occurred, while phytoplankton biovolume increased markedly and became dominated by cyanophytes and dinoflagellates. 3. Stepwise multiple linear regressions on log-transformed data revealed that the biomass of Daphnia, Bosmina, Ceriodaphmia and Chydorus were all significantly positively related to PVI and negatively to the abundance of fish or PVI x fish. The average individual biomass of cladocerans was negatively related to fish, but unrelated to PVI. Calculated zooplankton grazing pressure on phytoplankton was positively related to PVI and negatively to PVI x fish. Accordingly the phytoplankton biovolume was negatively related to PVI and to PVI x zooplankton biomass. Cyanophytes and chryptophytes (% of biomass) were positively and Chlorococcales and diatoms negatively related to PVI, while cyanophytes and Chlorococcales were negatively related to PVI x zooplankton biomass. In contrast diatoms and cryptophytes were positively related to the zooplankton biomass or PVI x zooplankton. 4. The results suggest that fish predation has less impact on the zooplankton community in the more structured environment of macrophyte beds, particularly when the PVI exceeds 15–20%. They further suggest that the refuge capacity of macrophytes decreases markedly with increasing fish density (in our study above approximately 10 CPUE). Provided that the density of planktivorous fish is not high, even small improvements in submerged macrophyte abundance may have a substantial positive impact on the zooplankton, leading to a lower phytoplankton biovolume and higher water transparency. However, at high fish densities the refuge effect seems low and no major zooplankton mediated effects of enhanced growth of macrophytes are to be expected.  相似文献   

8.
Since 1983 severe phytoplankton collapses have occurred 1–4 times every summer in the shallow and hypertrophic Lake Søbygård, which is recovering after a ten-fold decrease of the external phosphorus loading in 1982. In July 1985, for example, chlorophyll a changed from 650 µg l–1 to about 12 µg 1–1 within 3–5 days. Simultaneously, oxygen concentration dropped from 20–25 mg O2l–1 to less than 1 mg O2l–1, and pH decreased from 10.7 to 8.9. Less than 10 days later the phytoplankton biomass had fully recovered. During all phytoplankton collapses the density of filter-feeding zooplankton increased markedly, and a clear-water period followed. Due to marked changes in age structure of the fish stock, different zooplankton species were responsible for the density increase in different years, and consequently different collapse patterns and frequencies were observed.The sudden increase in density of filter-feeding zooplankton from a generally low summer level to extremely high levels during algae collapses, which occurred three times from July 1984 to June 1986, could neither be explained by changes in regulation from below (food) nor from above (predation). The density increase was found after a period with high N/P ratios in phytoplankton or nitrate depletion in the lake. During that period phytoplankton biomass, primary production and thus pH decreased, the latter from 10.8–11.0 to 10.5. We hypothesize that direct or indirect effects of high pH are important in controlling the filter-feeding zooplankton in this hypertrophic lake. Secondarily, this situation affects the trophic interactions in the lake water and the net internal loading of nutrients. Consequently, not only a high content of planktivorous fish but also a high pH may promote uncoupling of the grazing food-web in highly eutrophic shallow lakes, and thereby enhance eutrophication.A tentative model is presented for the occurrence of collapses, and their pattern in hypertrophic lakes with various fish densities.  相似文献   

9.
L. Cardona  P. Royo  X. Torras 《Hydrobiologia》2001,462(1-3):233-240
Some mugilid fish are known to enhance small phytoplankton in freshwater macrophyte-free environments due to zooplankton depletion. This suggests that they may have negative effects on natural macrophyte beds of freshwater and oligohaline lagoons due to phytoplantkon enhancement. To test this hypothesis, we compared the ecosystems of control enclosures that contained no fish with those of enclosures stocked with Liza saliens at two different densities. The occurrence of L. saliens at a density of 321±92.42 kg ha–1 reduced cladoceran density, depleted epiphytic chironomid larvae, enhanced mayfly nymphs and cyclopoid copepods and reduced the organic matter content of sediment, all in comparison with control enclosures. At a density of 673±42.04 kg ha–1, L. saliens reduced total zooplankton density, depleted epiphytic and sediment dwelling chironomid larvae and enhanced mayfly nymphs. The organic matter contents of sediment was not affected. These results showed that L. saliens was very effective in reducing zooplankton density even when macrophyte biomass was high. However, these effects do not affect phytoplankton density, probably because zooplankton was dominated by species with low filter-feeding rates and macrophytes depleted nutrients.  相似文献   

10.
Gizzard shad (Dorosoma cepedianum), a filter feeding omnivore, can consume phytoplankton, zooplankton and detritus and is a common prey fish in U.S. water bodies. Because of their feeding habits and abundance, shad have the potential to affect primary productivity (and hence water quality) directly through phytoplankton grazing and indirectly through zooplankton grazing and nutrient recycling. To test the ability of shad to influence primary productivity, we conducted a 16-day enclosure study (in 2.36-m3 mesocosms) and a 3-year whole-pond manipulation in 2–5 ha earthen ponds. In the mesocosm experiment, shad reduced zooplankton density and indirectly enhanced chlorophyll a concentration, primary productivity, and photosynthetic efficiency (assimilation number). While shad did not affect total phytoplankton density in the mesocosms, the density of large phytoplankton was directly reduced with shad. Results from the pond study were not consistent as predicted. There were few changes in the zooplankton and phytoplankton communities in ponds with versus ponds without gizzard shad. One apparent difference from systems in which previous work had been conducted was the presence of high densities of a potential competitor (i.e., larval bluegill) in our ponds. We suggest that the presence of these extremely high larval bluegill densities (20–350 larval bluegill m–3; 3–700 times higher density than that of larval gizzard shad) led to the lack of differences between ponds with versus ponds without gizzard shad. That is, the influence of gizzard shad on zooplankton or phytoplankton was less than the influence of abundant bluegill larvae. Differences in systems across regions must be incorporated into our understanding of factors affecting trophic interactions in aquatic systems if we are to be able to manage these systems for both water quality and fisheries.  相似文献   

11.
Juta Haberman 《Hydrobiologia》1996,338(1-3):113-123
L. Peipsi is one of the richest fish lakes in Europe. Planktivorous smelt dominates in the fish fauna. The abundance of zooplankton fluctuates between 43 600–2241 500 ind m–3, with the average 974 000 ind m–3, biomass ranges from 0,09–3,69 g m–3, with the average 1,86 g m–3. Since the 1960s the abundance of rotifers has risen considerably while the mean zooplankter weight (B/N) has decreased from 0.005 mg to 0.004 mg. Zooplankton production (herbivores 20.6, predators 1.8, whole zooplankton community 22.4 g C m–2 per period between May and October) can be considered high. Predatory zooplankton eats on an average 50% of the production of herbivorous zooplankton; about 50% of the whole zooplankton production (PFilt + Pred) reaches fishes. The production of herbivorous zooplankton constitutes 10.1% of primary production. This ratio indicates a direct relationship between zoo- and phytoplankton in the food chain; the detrital food chain seems of little importance. About 6% of phytoplankton energy reaches fishes. The transformation of energy in the food web is efficient. On the basis of zooplankton L. Peipsi can be considered a moderately eutrophic or meso-eutrophic lake.  相似文献   

12.
To understand the impact of young-of-the-year (YOY) fish on food web dynamics and water quality, we stocked larval walleye (9 mm TL) (Stizostedion vitreum) in six experimental ponds using two fish densities (10 and 50 fish m–3) with three replicates. At high fish density, the average abundances of cladocerans and copepods and the Secchi depth were lower whereas abundances of rotifers and algae, gross primary productivity (GPP), pH and total phosphorus concentration were higher than at low fish density. Fish impact on bacterial abundance, dissolved oxygen, nitrogen and phosphorus concentrations, however, was not significant. The within treatment measurements of all variables except GPP were significantly different over time. Our results indicate that YOY walleye predation at high density can affect plankton community by reducing large zooplankton biomass and water clarity, and increasing phytoplankton abundance. The impact of YOY piscivorous fish on plankton should be considered when biomanipulation is applied for improvement of water quality.  相似文献   

13.
Synopsis The effect of two contrasting fertilization regimes on juvenile walleye growth, survival and harvest was tested in six identical rearing ponds treated with fermented soybean meal at either a constant (36 g m–3week–1) or a progressively reduced (32 to 0 g m–3week–1) rate. Walleye length, percent survival and biomass harvest in constant fertilization ponds were 32, 83 and 294% greater, respectively, than those of reduced fertilization ponds. Chironomid larvae and pupae were the dominant prey (in terms of biomass) in juvenile walleye larger than 22 mm TL. Mean chironomid biomass was significantly higher in the constant fertilization ponds (5.1 vs. 1.7 g dry wt m–2), particularly after peak emergence around week 4. Zooplankton were less important prey after week 2, and mean zooplankton density was not significantly different between treatments. From these data we conclude that better walleye performance in the constant fertilization ponds was due to higher chironomid density during the last half of the experiment. Our findings are reviewed in light of current knowledge of juvenile walleye feeding ecology and contemporary pond culture procedures.  相似文献   

14.
Biomass and production of plankton communities were investigated in two Chinese integrated fish culture ponds in August, Dianshanhu Pond (with high density of planktivorous carp) and Pingwang Pond (with low density of planktivorous carp). The plankton communities were composed of rotifers, protozoans, phytoplankton (<40 µm) and bacteria. The large phytoplankton (>40 µm), cladocerans and copepods were rare because of grazing pressure by the carp. The density or biomass of bacteria (1.93 × 107 and 2.20 × 107 cells ml–1 on average in Dianshanhu and Pingwang Ponds, respectively), picophytoplankton (24.6 and 18.5 mg m–3 Chla on average) and rotifers (5372 and 20733 ind. 1–1 on average) exceeded the maximum values reported for natural waters.The average [3H]thymidine uptake rates were 694 and 904 pmoles 1–1 h–1 (13.4 and 20.6 µgC 1–1) and the bacterial production by the >2 µm fraction amounted 21–28% of total [3H] thymidine uptake rate in both ponds. The mean chlorophylla concentrations were 59.1 and 183 mg m–3 in Dianshanhu and Pingwang Ponds, respectively. 82.4% and 65.3% of the total Chla was contributed by the <10 µm nano- and picophytoplankton in each pond, respectively. In particular, the picophytoplankton contribution amounted 41.2% of thtal Chla in Dianshanhu Pond. Primary production was 2.5 and 3.4 gC m–2 d–1 in each pond, respectively, and >50% of production was contributed by picophytoplankton. The mean biomasses of protozoa were 168 µg 1–1 and 445 µg 1–1 and those of rotifers were 763 µg 1–1 and 1186 µg 1–1 in Dianshanhu and Pingwang Ponds, respectively. The ecological efficiencies expressed in terms of the ratios of primary production to zooplankton production were 0.22 and 0.31, for the two ponds.  相似文献   

15.
Predator-induced bottom-up effects in oligotrophic systems   总被引:1,自引:1,他引:0  
Five treatments (replication n=2) were applied to mesocosms in an oligotrophic lake (TP=6–10 µg 1-1) to assess the effects of fish on planktonic communities. The treatments were: (1) high fish (30 kg ha–1 Lepomis auritus, Linnaeus), (2) low fish (10 kg ha–1), (3) high removal of zooplankton, (4) low removal of zooplankton and (5) control. Total phosphorus, chlorophyll a, zooplankton biomass, and species richness decreased from high fish > low fish > control > low removal > high removal treatments. The fish treatments were dominated by crustacean zooplankton, while rotifers outnumbered the other zooplankters in the removal treatments. Calculations of zooplankton grazing rates suggested that clearance rates seldom exceeded 2% of the enclosure volume d–1 and were unlikely to have had much influence on phytoplankton biomass. Calculations from a phosphorus bioenergetics model revealed that when fish were present, their excretion rates were higher than the rates ascribed to zooplankton. Diet analysis showed that the fish derived most of their energy from the benthos and periphyton, and that fish excretion and egestion made significant contributions to the very oligotrophic pelagic phosphorus pool. In the absence of fish, zooplankton excretion was highest in the control treatments and lowest in the zooplankton removal treatments. Our results suggest that in oligotrophic systems, planktivorous fish can be significant sources of phosphorus and that fish and zooplankton induced nutrient cycling have significant impacts on planktonic community structure.  相似文献   

16.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

17.
Two insecticides, lindane (321 µg l–1) and deltamethrin (13 µg l–1) were employed in a four mesocosm experiment (two ponds of 10 m3 and two of 16 m3) to asses the impact of water pollution by pesticides. Resistance of the different zooplankton species was variable and depended upon both the group and the insecticide concentration. No effect of lindane was observed on macrozooplancton such as Cladocera and Copepoda. In the deltamethrin-treated pond, all species of zooplankton were found dead a day after the treatment. The microzooplankton (Rotifera and copepod nauplii) were highly susceptible to both insecticides. Although the larvae of Chaoborus were present in the ponds after the treatments, their density decreased (less than 1 individual l–1). The elimination of filter-feeding zooplankton by deltamethrin was followed by an increase of the concentration of chlorophyll a in the post-treatment period. Two months later the original zooplankton population recovered, with the addition of a new and dominant species: Ceriodaphnia reticulata.  相似文献   

18.
Summary Micronekton and macrozooplankton assemblages (0–1000 m) were sampled from the open ocean in the vicinity of marginal ice zones in the southern Scotia and western Weddell Seas using midwater trawls. Small regional differences in species composition were found in the differing hydrographic settings with the Scotia Sea being slightly more diverse. Most species exhibited broad vertical ranges with no distinct pattern of vertical movement. Exceptions were mesopelagic fish and Salpa thompsoni which undertook diel vertical migrations. Biomass was high (2.4–3.1 g DW/m2), comparable to Pacific subarctic waters. Euphausia superba and Salpa tompsoni were the numerical and biomass dominants, representing over 50% of the total numbers and standing stocks. In terms of biomass, euphausiids were the most important group at shallow depths (0–200 m) but were surpassed by salps in the Scotia Sea and mesopelagic fish in the Weddell Sea when all depths down to 1000 m were considered. Pelagic fish biomass (3.3–4.4 g WW/m2) greatly exceeded published estimates for birds (0.025–0.070 g WW/m2), seals (0.068–0.089 g WW/m2) and whales (0.167 to 0.399 g WW/m2), making mesopelagic fish the most prevalent krill predators in the Antarctic oceanic system.  相似文献   

19.
Intensive polyculture of blue tilapia, Oreochromis aureus, and common carp, Cyprinus carpio was conducted to determine their growth capacity and the accompanying water quality transitions in a 376 m2 (207 m3) fish pond without aeration or water exchange. A total of 485 fingerlings (290 tilapia and 195 carp) averaging 72 g each (total 35 kg) was stocked and fed commercial floating pellets (36% protein-6%-N) at the approximate daily rate of 3% of the fish biomass six days each week. The total net fish growth was 159.4 kg (4.2 t ha–1) with an average growth of 199.5 g per fish through the 96 days feeding period — 6 June to 7 September 1984. The s conversion ratio for the commercial feed was 1.3.Physiochemical patterns in the pond water were directly related to the rise and fall of turbidity through the course of the production trial. During one period of low turbidity, a biological inversion was evident with pH and dissolved oxygen measured at higher levels near the pond bottom and increasingly lower toward the surface. It is postulated that settled phytoplankton formed a photosynthetically-active algal mat on the pond bottom. The implications for potential fish kills can be significant.  相似文献   

20.
Synopsis In this study we investigate the effect of food availability (zooplankton biomass) on the growth of Odontesthes bonariensis (Atherinidae) larvae. The larvae were stocked in four 45 m2 outdoor tanks at relatively high densities (100 and 200 larvae m–2). Because of the high stocking densities, the zooplankton biomass was depleted in all tanks. However, the patterns of food limitation, and particularly periods of severe food shortage, differed in tanks stocked at different densities. We could therefore, observe the effect of food limitation in larvae that differed in weight and age. The effects of variables suspected to influence O. bonariensis growth rates (age and weight of larvae, available zooplankton biomass, mean individual weight of available preys, total ingested prey weight, and mean weight of ingested preys) were investigated using standard multiple regression methods, and a model assuming: (1) an allometric relationship between maximum growth rates and weight of larvae, and (2) an inverse relationship between growth depression and the available zooplankton biomass. Both methods were consistent in showing that only the weight of larvae, and the availability of zooplankton prey had significant effects on the growth of O. bonariensis. The model's results additionally suggest that, if the observed growth rates are scaled by the maximum growth rate corresponding to the larva weight, the effect of zooplankton biomass is largely independent of age and weight of larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号