共查询到20条相似文献,搜索用时 15 毫秒
1.
Conformational energy computations were carried out on collagenlike triple-stranded conformations of several poly(tripeptide)s with the general structure CH3CO? (Gly? X? Y)3? NHCH3. The sequences considered had various amino acid residues in position X or Y of the central tripeptide, with either Pro or Ala as a neighbor, i.e., Gly-X-Pro, Gly-X-Ala, Gly-Pro-Y, and Gly-Ala-Y. Minimum-energy conformations were computed for the side chains, and their distributions were compared for the four sequences. The residues used were Abu (= α-aminobutyric acid), Leu, Phe, Ser, Asp, Asn, Val, Ile, and Thr. The conformational energy of a ? Ch2? CH3 side chain in Abu was mapped as a function of the dihedral angle χ1. Intrastrand interactions with neighboring residues do not affect the conformations of a side chain in position Y, and they have a minor effect on it in the X-Ala sequence, but they strongly restrict the conformational freedom of the side chain in the X-Pro sequence. Conversely, interstrand interactions do not affect side chains in position X, but they strongly restrict the conformational freedom of a side chain in position Y if there is a nearby Pro residue in a neighboring strand. Hydrogen bonds with the backbone can be formed in some conformations of long polar side chains, such as Asp, Asn, or Gln. All amino acid residues can be accommodated in collagen. Because of the interactions mentioned above, steric and energetic constraints can be correlated with observed preferences of certain amino acids for positions X or Y in collagen. Hence, these preferences may be explained, in part, in terms of differences in the conformational freedom of the side chains in the triple-stranded structure. 相似文献
2.
Like all other complex biological systems, proteins exhibit properties not found in free amino acids (i.e., emergent properties). Here, we explore top-down constraints experienced by the residue side chains in proteins compared to amino acids in increasingly complex molecular environments: free amino acids, end-capped amino acids, and the central residue in an alpha-helical nonapeptide. The crystalline structure of the contractile protein profilin Ib and the enzyme trypsin were chosen as objects of study, and submitted to 10 ns molecular dynamics (MD) simulations. The results revealed increased conformational constraints on the side chains when going from the simpler to the more complex compounds. A Shannon entropy (SE) analysis of the conformational behavior of the side chains showed in most cases a progressive and marked decrease in the SE of the chi1 and chi2 dihedral angles. This is equivalent to stating that conformational constraints on the side chain of residues increase their information content and, hence, recognition specificity compared to free amino acids. In other words, the vastly increased information content of a protein relative to its free monomers is embedded not only in the tertiary structure of the backbone, but also in the conformational behavior of the side chains. The postulated implication is that both backbone and side chains, by virtue of being conformationally constrained, contribute to the protein's recognition specificity toward other macromolecules and ligands. 相似文献
3.
T. P. Creamer G. D. Rose 《Protein science : a publication of the Protein Society》1995,4(7):1305-1314
The thermodynamic basis of helix stability in peptides and proteins is a topic of considerable interest. Accordingly, we have computed the interactions between side chains of all hydrophobic residue pairs and selected triples in a model helix, using Boltzmann-weighted exhaustive modeling. Specifically, all possible pairs from the set Ala, Cys, His, Ile, Leu, Met, Phe, Trp, Tyr, and Val were modeled at spacings of (i, i + 2), (i, i + 3), and (i, i + 4) in the central turn of a model poly-alanyl alpha-helix. Significant interactions--both stabilizing and destabilizing-- were found to occur at spacings of (i, i + 3) and (i, i + 4), particularly in side chains with rings (i.e., Phe, Tyr, Trp, and His). In addition, modeling of leucine triples in a helix showed that the free energy can exceed the sum of pairwise interactions in certain cases. Our calculated interaction values both rationalize recent experimental data and provide previously unavailable estimates of the constituent energies and entropies of interaction. 相似文献
4.
Barth A 《Progress in biophysics and molecular biology》2000,74(3-5):141-173
Amino acid side chains play fundamental roles in stabilising protein structures and in catalysing enzymatic reactions. These fields are increasingly investigated by infrared spectroscopy at the molecular level. To help the interpretation of the spectra, a review of the infrared absorption of amino acid side chains in H2O and 2H2O is given. The spectral region of 2600–900 cm−1 is covered. 相似文献
5.
6.
Hydrogen bonding of amino acid side chains to nucleic acid bases 总被引:8,自引:0,他引:8
7.
8.
Amino acids seem to have specific preferences for various locations in alpha-helices. These specific preferences, called singlet local propensity (SLP), have been determined by calculating the preference of occurrence of each amino acid in different positions of the alpha-helix. We have studied the occurrence of amino acids, single or pairs, in different positions, singlet or doublet, of alpha-helices in a database of 343 non-homologous proteins representing a unique superfamily from the SCOP database with a resolution better than 2.5 A from the Protein Data Bank. The preference of single amino acids for various locations of the helix was shown by the relative entropy of each amino acid with respect to the background. Based on the total relative entropy of all amino acids occurring in a single position, the N(cap) position was found to be the most selective position in the alpha-helix. A rigorous statistical analysis of amino acid pair occurrences showed that there are exceptional pairs for which, the observed frequency of occurrence in various doublet positions of the alpha-helix is significantly different from the expected frequency of occurrence in that position. The doublet local propensity (DLP) was defined as the preference of occurrences of amino acid pairs in different doublet positions of the alpha-helix. For most amino acid pairs, the observed DLP (DLP(O)) was nearly equal to the expected DLP (DLP(E)), which is the product of the related SLPs. However, for exceptional pairs of amino acids identified above, the DLP(O) and DLP(E) values were significantly different. Based on the relative values of DLP(O) and DLP(E), exceptional amino acid pairs were divided into two categories. Those, for which the DLP(O) values are higher than DLP(E), should have a strong tendency to pair together in the specified position. For those pairs which the DLP(O) values are less than DLP(E), there exists a hindrance in neighboring of the two amino acids in that specific position of the alpha-helix. These cases have been identified and listed in various tables in this paper. The amount of mutual information carried by the exceptional pairs of amino acids was significantly higher than the average mutual information carried by other amino acid pairs. The average mutual information conveyed by amino acid pairs in each doublet position was found to be very small but non-zero. 相似文献
9.
The acidic strengths in gas phase of three groups (NH4+, H2S, and HCOOH) that mimic the most common amino acid side chains of enzymes are studied by means of quantum mechanical methods. The results demonstrate that in gas phase the acidities of such groups change drastically with respect to those reported in aqueous phase. Moreover, the dependence between the energetics of the proton-transfer process and the distance separating the acid and base groups is stated. The biological implications of these results are discussed. 相似文献
10.
Preferential interactions between chain segments are studied in unfolded cytochrome c. The method takes advantage of heme ligation in the unfolded protein, a feature unique to proteins with covalently attached heme. The approach allows estimation of the effective concentration of one polypeptide chain segment relative to another, and is successful in detecting differences for peptide chain segments separated by different numbers of residues in the linear sequence. The method uses proton NMR spectroscopy to monitor displacement of the histidine heme ligands by imidazole as guanidine hydrochloride unfolded cytochrome c is titrated with deuterated imidazole. When the imidazole concentration exceeds the effective (local) concentration of histidine ligands, the protein ligands are displaced by deuterated imidazole. On displacement, the histidine ring proton resonances move from the paramagnetic region of the spectrum to the diamagnetic region. Titrations have been carried out for members of the mitochondrial cytochrome c family that contain different numbers of histidine residues. These include cytochromes c from tuna (2), yeast iso-2 (3), and yeast iso-1-MS (4). At high imidazole concentration, the number of proton resonances that appear in the histidine ring C2H region of the NMR spectrum is one less than the number of histidine residues in the protein. So one histidine, probably His-18, remains as a heme ligand. The effective local concentrations of histidines-26, -33, and -39 relative to the heme (position 14-17) are estimated to be (3-16) X 10(-3) M.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
Proline-induced constraints in alpha-helices 总被引:9,自引:0,他引:9
The disrupting effect of a prolyl residue on an α-helix has been analyzed by means of conformational energy computations. In the preferred, nearly α-helical conformations of Ac-Ala4-Pro-NHMe and of Ac-Ala7-Pro-Ala7-NHMe, only the residue preceding Pro is not α-helical, while all other residues can occur in the α-helical A conformation; i.e., it is sufficient to introduce a conformational change of only one residue in order to accommodate proline in a distorted α-helix. Other low-energy conformations exist in which the conformational state of three residues preceding proline is altered considerably; on the other hand, another conformation in which these three residues retain the near-α-helical A-conformational state (with up to 26° changes of their dihedral angles ? and ψ, and a 48° change in one ω from those of the ideal α-helix) has a considerably higher energy. These conclusions are not altered by the substitution of other residues in the place of the Ala preceding Pro. The conformations of the peptide chain next to prolyl residues in or near an α-helix have been analyzed in 58 proteins of known structure, based on published atomic coordinates. Of 331 α-helices, 61 have a Pro at or next to their N-terminus, 21 have a Pro next to their C-terminus, and 30 contain a Pro inside the helix. Of the latter, 16 correspond to a break in the helix, 9 are located inside distorted first turns of the helix, and 5 are parts of irregular helices. Thus, the reported occurrence of prolyl residues next to or inside observed α-helices in proteins is consistent with the computed steric and energetic requirements of prolyl peptides. 相似文献
12.
Conformational restrictions of biologically active peptides via amino acid side chain groups 总被引:7,自引:0,他引:7
V J Hruby 《Life sciences》1982,31(3):189-199
Determining the relationships between conformation and biological activity in peptide hormones and neurotransmitters is an important goal of contemporary biology. A major difficulty in these studies is the conformational flexibility of most peptides and the high dependence of the conformations on environment. The question arises whether conformations determined in solution are relevant to those important to the peptide at the membrane receptor(s). One recent approach to overcome these difficulties has been the use of conformational constraints by covalent bonding of side chain groups of residues in the peptide. In this manner linear peptides are rendered cyclic, and cyclic peptides are further conformationally constrained either by ring contractions or by other conformational constraints. Biologically active peptides specifically designed by this approach have been found to possess several useful properties including: 1) greater conformational integrity; 2) increased agonist or antagonist potency; 3) prolonged biological activity; 4) increased enzymatic stability; and 5) increased specificity for a particular receptor. Careful applications of this approach have provided important new designs features for peptide structure-function studies, and new insights into peptide conformation-activity relationships for oxytocin, somatostatin, enkephalin, bradykinin, vasopressin, and other biologically active peptides. 相似文献
13.
Two single cysteine substitution mutants at helix surface sites in T4 lysozyme (D72C and V131C) have been modified with a series of nitroxide methanethiosulfonate reagents to investigate the structural and dynamical origins of their electron paramagnetic resonance spectra. The novel reagents include 4-substituted derivatives of either the pyrroline or pyrrolidine series of nitroxides. The spectral line shapes were analyzed as a function of side chain structure and temperature using a simulation method with a single order parameter and diffusion rates about three orthogonal axes as parameters. Taken together, the results provide strong support for an anisotropic motional model of the side chain, which was previously proposed from qualitative features of the spectra and crystal structures of spin labeled T4 lysozyme. Site-specific differences in apparent order parameter are interpreted in terms of backbone dynamics modes with characteristic correlation times in the nanosecond or faster time scale. The saturated 4-substituted pyrrolidine nitroxides are shown to be a suitable template for novel "functionalized" side chains designed to mimic salient features of the native side chains they replace. 相似文献
14.
Mobile unnatural amino acid side chains in the core of staphylococcal nuclease. 总被引:2,自引:2,他引:0 下载免费PDF全文
R. Wynn P. C. Harkins F. M. Richards R. O. Fox 《Protein science : a publication of the Protein Society》1996,5(6):1026-1031
The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids. 相似文献
15.
Energy calculations have been used to study the hydration sites around the polar groups of serine, threonine and tyrosine side chains. These hydration sites depend not only on the hybridization of the polar group but also on the local secondary structure, the chi 1 side chain torsion angle and the position of the hydroxyl hydrogen atom. For tyrosine side chains, two solvent sites are found approximately in the plane of the ring. Even for serine and threonine side chains only two minimum energy sites are found in general of which one is in an expected position within hydrogen bonding of the hydroxyl hydrogen atom (unless this is blocked from interaction with solvent molecules by, for example, Oi-4 or Oi-3. The position of the second of these sites depends not only on the position of the hydroxyl oxygen but also on neighbouring main chain atoms to which it can also hydrogen bond. There is good agreement with the solvent distributions obtained from crystallographic data. 相似文献
16.
This study focuses on the development of DNA catalysts (deoxyribozymes) that modify side chains of peptide substrates, with the long-term goal of achieving DNA-catalyzed covalent protein modification. We recently described several deoxyribozymes that modify tyrosine (Tyr) or serine (Ser) side chains by catalyzing their reaction with 5'-triphosphorylated RNA, forming nucleopeptide linkages. In each previous case, the side chain was presented in a highly preorganized three-dimensional architecture such that the resulting deoxyribozymes inherently cannot function with free peptides or proteins, which do not maintain the preorganization. Here we describe in vitro selection of deoxyribozymes that catalyze Tyr side chain modification of tethered and free peptide substrates, where the approach can potentially be generalized for catalysis involving large proteins. Several new deoxyribozymes for Tyr modification (and several for Ser modification as well) were identified; progressively better catalytic activity was observed as the selection design was strategically changed. The best new deoxyribozyme, 15MZ36, catalyzes covalent Tyr modification of a free tripeptide substrate with a k(obs) of 0.50 h(-1) (t(1/2) of 83 min) and up to 65% yield. These findings represent an important advance by demonstrating, for the first time, DNA catalysis involving free peptide substrates. The new results suggest the feasibility of DNA-catalyzed covalent modification of side chains of large protein substrates and provide key insights into how to achieve this goal. 相似文献
17.
Roles of the amino acid side chains in the actin-binding S-site of myosin heavy chain 总被引:2,自引:0,他引:2
The heptapeptide Ile-Arg-Ile-Cys-Arg-Lys-Gly-OEt is the analog of the S-site, one of the actin-binding sites in myosin [Suzuki et al. (1987) J. Biol. Chem. 262, 11410-11412]. Various substituted heptapeptides were synthesized, and the dissociation constants of each acto-heptapeptide complex was measured. Comparison of the dissociation constants indicated that the hydrophobic side chain of Ile-1 was critical for the binding with F-actin, but not that of Ile-3. The positive charge and the side chain length of Arg-2 were also important. The presence of a sulfur atom in the Cys-4 was also necessary. The affinity of the N-terminal Ile-Arg-Ile part for F-actin was influenced by the kind of residues in the C-terminal tetrapeptide part. Based on these results, the side chains of Ile(702), Arg(703), and Cys(SH1)(705) in myosin subfragment-1 heavy chain were assigned to be critical for the binding with F-actin. The amino acid sequence of S-1 heavy chain containing these critical residues for the S-site from residue number 700 to 717 can be predicted as an analogue of the segment B of the ATP-binding site [Walker et al. (1982) EMBO J. 1, 945-951]. The actin-binding S-site possibly shares a part of the ATP-binding site in myosin. We discuss the possibility that the S-site is an inhibitory site of myosin ATPase and the so-called actin-activation of myosin ATPase is a deinhibition induced by transient binding of F-actin to the S-site. 相似文献
18.
The nature of amino acid side chains which are critical for the activity of lysozyme 总被引:5,自引:0,他引:5
S M Parsons L Jao F W Dahlquist C L Borders J Racs T Groff M A Raftery 《Biochemistry》1969,8(2):700-712
19.
We have synthesized the free amino acid adenylate anhydrides of phenylalanine, leucine, isoleucine and valine. These activated compounds are very labile at high pH, but at low pH they become more stable. Proton NMR spectra of these adenylates show that in every case, the hydrophobic side chains, even in these small molecules at low pH and low concentration, are associated with the "face" of the adenine ring. Although aromatic rings are known to associate with adenine in this fashion, to our knowledge this is the first report of an intercalative-type interaction of aliphatic side chains with nucleic acid bases. Since adenine is the most hydrophobic base, these interactions are of a hydrophobic character, and occur in spite of the fact that the adenine ring is protonated. These results may have implications regarding recognition processes in DNA-protein and RNA-protein interactions. 相似文献
20.
A new classification of the amino acid side chains based on doublet acceptor energy levels 总被引:1,自引:0,他引:1 下载免费PDF全文
We describe a new classification of the amino acid side chains based on the potential energy level at which each will accept an extra (doublet) electron. The doublet acceptor energy level, and the doublet acceptor orbital were calculated using semiempirical INDO/2-UHF molecular orbital theory. The results of these calculations show that the side chains fall into four groups. We have termed these groups repulsive, insulating, semiconducting, and attractive in accordance with where each lies on the relative energy scale. We use this classification to examine the role of residues between the donor and acceptor in modulating the rate and mechanism of electron transfer in proteins. With the calculated acceptor levels, we construct a potential barrier for those residues between the donor and acceptor. It is the area beneath this barrier that determines the decay of electronic coupling between donor and acceptor, and thus the transfer rate. We have used this schematic approach to characterize the four electron transfer pathways in myoglobin recently studied by Mayo et al. (Mayo, S.L., W.R. Ellis, R.J. Crutchley, and H.B. Gray. 1986. Science [Wash. DC]. 233:948-952). 相似文献