首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The objective of the work was to determine differences in plant response to geographic isolates of a vesicular-arbuscular mycorrhizal (VAM) fungus, and to demonstrate the need for such determinations in the selection of desirable host-endophyte combinations for practical applications. Soybean ( Glycine max (L.) Merr.) plants were inoculated with Bradyrhizobium japonicum and isolates of the VAM-fungal morphospecies Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe, collected from an arid (AR), semiarid (SA) or mesic (ME) area. Inoculum potentials of the VAM-fungal isolates were determined and the inocula equalized, achieving the same level of root colonization (41%, P >0.05) at harvest (50 days). Plants of the three VAM treatments (AR, SA and ME) were evaluated against von VAM controls. Significant differences in plant response to colonization were found in dry mass, leaf K, N and P concentrations, and in root/shoot, nodule/root, root length/leaf area and root length/root mass ratios. The differences were most pronounced and consistent between the AR and all other treatments. Photosynthesis and nodule activity were higher ( P <0.05) in all VAM treatments, but only the AR plants had higher ( P <0.05) photosynthetic water-use efficiency than the controls. Nodule activity, evaluated by H2 evolution and C2H2 reduction, differed significantly between treatments. The results are discussed in terms of nutritional and non-nutritional effects of VAM colonization on the development and physiology of the tripartite soybean association in the light of intraspecific variability within the fungal endophyte.  相似文献   

2.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants nodulated by Bradyhizobium japonicum strain USDA 110 were grown in pot cultures in severely P- and N-deficient soil and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or fertilized with a high (HP) or low (LP) level of KH2PO4 (0.6 or 0.3 m M , respectively), After 7 weeks of growth, nodule and chloroplast activities (C2H2 reduction and CO2 exchange rate) were determined. Photosynthetic P-use efficiency of CO2 fixation was significantly higher in VAM than in HP plants, while that of nitrogenase activity was lower. The LP plants were intermediate in both respects. The ratio of nodule to chloroplast activity [mol C2H2 reduced (mol CO2 fixed)−1] was highest in HP and lowest in VAM plants. Root colonization by the VAM fungus significantly increased nodule number and dry weight and reduced nodule specific mass and activity in comparison to HP plants. In spite of lower nodule activity, VAM plants were significantly larger and had higher N concentrations than the HP plants. The results suggest nonnutritional. VAM-elicited and host-mediated effects on the symbiotic functions of the legume association.  相似文献   

3.
Soybean [ Glycine max (L.) Merr. cv. Hobbit] plants were inoculated with a HUP− strain of Bradyrhizobium japonicum (Nitragin 61A118) and either colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol & Gerd.) Gerd. and Trappe or fertilized with KH2PO4 (nonVAM). They were grown for 50 days in a growth chamber and harvested over a 4-day drought period during which available soil water decreased to 0. Nodule P concentrations and P-use efficiency declined linearly with soil and root water content during the harvest period in both VAM and nonVAM plants. Nitrogenase activity, estimated from H2 evolution and C2H2 reduction data, was also a linear function of declining nodule P concentrations and CO2-exchange rates and showed simular patterns in both treatments. Hydrogen evolution and the relative efficiency of N2 fixation, on the other hand, reacted differently to increasing drought in VAM and nonVAM plants. Differences in the responses of nodule activity in VAM and nonVAM plants to drought are interpreted in terms of demand for nodule P and carbohydrates and of the effects of dehydration on O2 diffusion through nodule tissue.  相似文献   

4.
Soybean [ Glycine max (L.) Merr. cv. Kent] plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum (Thaxt. sensu Gerd.) Gerd. and Trappe in pot cultures using an inert medium and a nutrient solution. Phosphorus was provided initially as 0, 25,50, 100 or 200 mg hydroxyapatite [HAP, Ca10(PO4)6(OH)2] per pot. Under the low (0 mg HAP) and high (100 and 200 mg HAP) P regimes, VAM plants showed 20, 25 and 38% growth retardation, respectively, relative to non-colonized controls. At 50 mg HAP, VAM plant growth was significantly enhanced (14%). Dry weight and P content of both VAM and control plants increased with increased P availability throughout the HAP gradient. Intraradical VAM fungal biomass increased linearly with increasing P availability. Extraradical VAM fungal biomass was smaller than the intraradical component of the fungus at the lowest and highest levels of P addition in the growth medium. The ratio of extra- to intraradical mycelium, a suggested index of VAM fungal effectiveness, was greatest for the 50 mg HAP treatment, coinciding with growth enhancement of the host plant. This enhanced growth of the host at an intermediate P level was apparently a result of increased P uptake by the endophyte.  相似文献   

5.
The objective of the study was to determine whether nutrient fluxes mediated by hyphae of vesicular-arbuscular mycorrhizal (VAM) fungi between the root zones of grass and legume plants differ with the legume's mode of N nutrition. The plants, nodulating or nonnodulating isolines of soybean [ Glycine max (L.) Merr.], were grown in association with a dwarf maize ( Zea mays L.) cultivar in containers which interposed a 6-cm-wide root-free soil bridge between legume and grass container compartments. The bridge was delimited by screens (44 μm) which permitted the passage of hyphae, but not of roots and minimized non VAM interactions between the plants. All plants were colonized by the VAM fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe. The effects of N input to N-sufficient soybean plants through N2-fixation or N-fertilization on associated maize-plant growth and nutrition were compared to those of an N-deficient (nonnodulating, unfertilized) soybean control. Maize, when associated with the N-fertilized soybean, increased 19% in biomass, 67% in N content and 77% in leaf N concentration relative to the maize plants of the N-deficient association. When maize was grown with nodulated soybean, maize N content increased by 22%, biomass did not change, but P content declined by 16%. Spore production by the VAM fungus was greatest in the soils of both plants of the N-fertilized treatment. The patterns of N and P distribution, as well as those of the other essential elements, indicated that association with the N-fertilized soybean plants was more advantageous to maize than was association with the N2-fixing ones.  相似文献   

6.
Soybean (Glycine max [L.] Merr.) plants were colonized by the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (VAM plants) or fertilized with KH2PO4 (nonVAM plants) and grown for 50 days under controlled conditions. Plants were harvested over a 4-day period during which the soil was permitted to dry slowly. The harvest was terminated when leaf gas exchange was no longer measurable due to drought stress. Significantly different effects in shoot water content, but not in shoot water potential, were found in VAM and nonVAM plants in response to drought stress. Leaf conductances of the two treatments showed similar response patterns to changes in soil water and shoot water potential but were significantly different in magnitude and trend relative to shoot water content. The relationships between transpiration, CO2 exchange and water-use efficiency (WUE) were the same in VAM and nonVAM plants in response to decreasing soil water and shoot water potential. As a function of shoot water content, however, WUE showed different response patterns in VAM and nonVAM plants.  相似文献   

7.
Productivity of trees can be affected by limitations in resources such as water and nutrients, and herbivory. However, there is little understanding of their interactive effects on carbon uptake and growth. We hypothesized that: (1) in the absence of defoliation, photosynthetic rate and leaf respiration would be governed by limiting resource(s) and their impact on sink limitation; (2) photosynthetic responses to defoliation would be a consequence of changing source:sink relationships and increased availability of limiting resources; and (3) photosynthesis and leaf respiration would be adjusted in response to limiting resources and defoliation so that growth could be maintained. We tested these hypotheses by examining how leaf photosynthetic processes, respiration, carbohydrate concentrations and growth rates of Eucalyptus globulus were influenced by high or low water and nitrogen (N) availability, and/or defoliation. Photosynthesis of saplings grown with low water was primarily sink limited, whereas photosynthetic responses of saplings grown with low N were suggestive of source limitation. Defoliation resulted in source limitation. Net photosynthetic responses to defoliation were linked to the degree of resource availability, with the largest responses measured in treatments where saplings were ultimately source rather than sink limited. There was good evidence of acclimation to stress, enabling higher rates of C uptake than might otherwise have occurred.  相似文献   

8.
The source-sink ratio of 1-year-old, potted sour cherry trees ( Prunus cerasus L.) was altered by whold-plant partial defoliation or continuous illumination to determine if trees were primarily sink limited and to elucidate the means whereby photosynthetic enhancement or inhibition occurs. Leaf xylem water potential was not affected by either treatment. Although stomatal conductance was reduced by 1 to 3 days of continuous illumination, internal CO2 concentration was not significantly affected indicating that the enhanced physical limitation imposed by the stomata was of no physiological significance. Net CO2 assimilation (A) was significantly higher 4 days after partial defoliation and lower from 1 to 4 days following continuious illumination. The increase in A in partially defoliated plants was associated with reduced leaf starch and increased surose and sorbitol concentrations. The decrease in A in continuously illuminated plants was associated with a decrease in variable fluorescence, photochemical efficiency of photosystem II (PSII) and an increase in instantaneous fluorescence, indicating that leaves were photoinhibited and that irreversible damage had occurred to PSII. In addition, leaves of continuously illuminated plants had 80% more starch and significantly less sucrose and sorbitol. These altered leaf carbohydrate concentrations indicate that the existing sink limitation may have been aggravated by continuous illumination leading to an insufficient utilization of sucrose from the leaf. Whether the altered photochemical and biochemical events occurred simultaneously and/or to the same degree to lead to the observed responses remains equivocal.  相似文献   

9.
Soybean (Glycine max [L.] Merr.) plants were nodulated (Bradyrhizobium japonicum) and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or left uncolonized. All plants were grown unstressed for 21 days initially. After this period, some VAM and non-VAM plants were exposed to four 8-day drought cycles while others were kept well watered. Drought cycles were terminated by rewatering when soil moisture potentials reached −1.2 megapascal. Nodule development and activity, transpiration, leaf conductance, leaf and root parameters including fresh and dry weight, and N and P nutrition of VAM plants and of non-VAM, P-fed plants grown under the same controlled conditions were compared. All parameters, except N content, were greater in VAM plants than in P-fed, non-VAM plants when under stress. The opposite was generally true in the unstressed comparisons. Transpiration and leaf conductance were significantly greater in stressed VAM than in non-VAM plants during the first half of the final stress cycle. Values for both VAM and non-VAM plants decreased linearly with time during the cycle and converged at a high level of stress (−1.2 megapascal). Effects of VAM fungi on the consequences of drought stress relative to P nutrition and leaf gas exchange are discussed in the light of these findings and those reported in the literature.  相似文献   

10.
Rising atmospheric CO2 may increase potential net leaf photosynthesis under short-term exposure, but this response decreases under long-term exposure because plants acclimate to elevated CO2 concentrations through a process known as downregulation. One of the main factors that may influence this phenomenon is the balance between sources and sinks in the plant. The usual method of managing a forage legume like alfalfa requires the cutting of shoots and subsequent regrowth, which alters the source/sink ratio and thus photosynthetic behaviour. The aim of this study was to determine the effect of CO2 (ambient, around 350 vs. 700 µmol mol−1), temperature (ambient vs. ambient + 4° C) and water availability (well-irrigated vs. partially irrigated) on photosynthetic behaviour in nodulated alfalfa before defoliation and after 1 month of regrowth. At the end of vegetative normal growth, plants grown under conditions of elevated CO2 showed photosynthetic acclimation with lower photosynthetic rates, Vcmax and ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco) activity. This decay was probably a consequence of a specific rubisco protein reduction and/or inactivation. In contrast, high CO2 during regrowth did not change net photosynthetic rates or yield differences in Vcmax or rubisco total activity. This absence of photosynthetic acclimation was directly associated with the new source-sink status of the plants during regrowth. After cutting, the higher root/shoot ratio in plants and remaining respiration can function as a strong sink for photosynthates, avoiding leaf sugar accumulation, the negative feed-back control of photosynthesis, and as a consequence, photosynthetic downregulation.  相似文献   

11.
12.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   

13.
1. We report changes in photosynthetic capacity of leaves developed in varying photon flux density (PFD), nitrogen supply and CO2 concentration. We determined the relative effect of these environmental factors on photosynthetic capacity per unit leaf volume as well as the volume of tissue per unit leaf area. We calculated resource-use efficiencies from the photosynthetic capacities and measurements of leaf dry mass, carbohydrates and nitrogen content.
2. There were clear differences between the mechanisms of photosynthetic acclimation to PFD, nitrogen supply and CO2. PFD primarily affected volume of tissue per unit area whereas nitrogen supply primarily affected photosynthetic capacity per unit volume. CO2 concentration affected both of these parameters and interacted strongly with the PFD and nitrogen treatments.
3. Photosynthetic capacity per unit carbon invested in leaves increased in the low PFD, high nitrogen and low CO2 treatments. Photosynthetic capacity per unit nitrogen was significantly affected only by nitrogen supply.
4. The responses to low PFD and low nitrogen appear to function to increase the efficiency of utilization of the limiting resource. However, the responses to elevated CO2 in the high PFD and high nitrogen treatments suggest that high CO2 can result in a situation where growth is not limited by either carbon or nitrogen supply. Limitation of growth at elevated CO2 appears to result from internal plant factors that limit utilization of carbohydrates at sinks and/or transport of carbohydrates to sinks.  相似文献   

14.
Defoliation can reduce net fixation of atmospheric CO2 by the canopy, but increase the intensity and duration of photosynthetically active radiation on stems. Stem CO2 flux and leaf gas exchange in young Eucalyptus globulus seedlings were measured to assess the impact of defoliation on these processes and to determine the potential contribution of re-fixation by photosynthetic inner bark in offsetting the effects of defoliation in a woody species. Pot and field trials examined how artificial defoliation of the canopy affected the photosynthetic characteristics of main stems of young Eucalyptus globulus seedlings. Defoliated potted seedlings were characterized by transient increases in foliar photosynthetic rates and concomitant decreases in stem CO2 fluxes (both in the dark and light). Defoliated field-grown seedlings showed similar stem CO2 flux responses, but of reduced magnitude. Despite demonstrating increased re-fixation capability, defoliated potted-seedlings had slowed stem growth. The green stem of seedlings exhibited largely shade-adapted characteristics. Defoliation reduced stem chlorophyll a/b ratio and increased carotenoid concentration. An increased capacity to re-fix internally respired CO2 (up to 96%) suggested that stem re-fixation represents a previously unexplored mechanism to minimize the impact of foliar loss by maximizing the contribution of all photosynthetic tissues, particularly for young seedlings.  相似文献   

15.
Pepper ( Capsicum annuum L.) plants with and without the VA-mycorrhizal fungus Ghmus deserticola Trappe. Bloss and Menge (VAM and NVAM. respectively), were drought acclimated by four drought cycles (DA) or kept well watered (NDA). All plants were then subjected to an additional drought followed by a 3-day irrigation recovery period. Measurements of water relations, gas exchange and carbohydrates were made at selected intervals throughout the drought cycles and recovery. To equalize growth and avoid higher P in VAM plants. NVAM plants received higher P fertilization. Consequently, similar transpirational surface and shoot mass were achieved in all treatments, but NVAM had a higher tissue P concentration than VAM plants. Plants that were either VAM or DA, but especially the VAM-DA plants, tended to be high in net photosynthetic flux (A), A per unit of tissue P concentration (A/P), stomatal conductance (g) or leaf turgor (Ψp) during high environmental stress or recovery from stress. During this time, NVAM-NDA plants had low A. A/P and leaf chlorophyll, but high soluble carbohydrate concentrations in their leaves. All VAM and DA plants had some osmotic adjustment compared to the NVAM-NDA plants, but VAM-DA plants had the most. Osmotic adjustment was not due to accumulation of soluble carbohydrate. The high turgor, A and g in the VAM-DA plants during and following environmental stress indicated superior drought resistance of these plants; however, osmotic adjustment was only apparent during recovery and cannot account for the observed drought resistance during environmental stress. Drought resistance of VAM-DA plants was not attributable to high leaf P concentration or confounded by differences in plant transpirational surface.  相似文献   

16.
Artificial chalk grassland swards were exposed to either ambient air or air enriched to 600 μ mol mol–1 CO2, using free-air CO2 enrichment technology, and subjected to an 8 week simulated grazing regime. After 14 months of treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco) activity ( V c,max) and electron transport mediated ribulose-1,5-bisphosphate (RuBP) regeneration capacity ( J max), estimated from leaf gas exchange, were significantly lower in fully expanded leaves of Anthyllis vulneraria L. (a legume) and Sanguisorba minor Scop. grown in elevated CO2. After a change in source:sink balance brought about by defoliation, photosynthetic capacity was fully restored in A. vulneraria and S. minor, but acclimation continued in the grass Bromopsis erecta (Hudson) Fourr. Changes in net photosynthesis ( P n) with growth at elevated CO2 ranged from a 1·6% reduction in precut leaves of A. vulneraria to a 47·1% stimulation in postcut leaves of S. minor . Stomatal acclimation was observed in leaves of A. vulneraria (reduced stomatal density) and B. erecta (reduced stomatal conductance). The results are discussed in terms of whole-plant resource-use optimization and chalk grassland community competitive interactions at elevated CO2.  相似文献   

17.
Abstract. Plantago maritima L. was grown at three levels of salinity, 50, 200, 350 mol m−3 NaCl, and the effects on growth, ion content and photosynthetic capacity were studied. Shoot and root dry weight, leaf production and leaf length were all substantially reduced in plants grown at high salinity. Total leaf area of plants grown at 350 mol m−3 NaCl was only 20% of that in plants at low salinity. Both the Na+ and K+ content of leaves and roots increased with external salinity. There was no change in the Na+/K+ ratio of leaves or roots at different salinity levels. Despite the large reductions in growth and high accumulation of Na+ ions, leaf photosynthetic rate was only slightly reduced by salinity stress. The reduction in photosynthesis was not caused by reduced biochemical capacity as judged by photosynthetic response to intercellular CO2 and by ribulose-1,5-bisphosphate carboxylase activity, but was due to reduced leaf conductance and low intercellular CO2 concentration. The increased stomatal limitation of photosynthesis resulted in higher water-use efficiency of plants grown at high salinity.  相似文献   

18.
The effects of manganese (Mn) toxicity on photosynthesis in white birch ( Betula platyphylla var. japonica ) leaves were examined by the measurement of gas exchange and chlorophyll fluorescence in hydroponically cultured plants. The net photosynthetic rate at saturating light and ambient CO2 (Ca) of 35 Pa decreased with increasing leaf Mn concentrations. The carboxylation efficiency, derived from the difference in CO2 assimilation rate at intercellular CO2 pressures attained at Ca of 13 Pa and O Pa, decreased with greater leaf Mn accumulation. Net photosynthetic rate at saturating light and saturating CO2 (5%) also declined with leaf Mn accumulation while the maximum quantum yield of O2 evolution at saturating CO2 was not affected. The maximum efficiency of PSII photochemistry (Fv/Fm) was little affected by Mn accumulation in white birch leaves over a wide range of leaf Mn concentrations (2–17 mg g−1 dry weight). When measured in the steady state of photosynthesis under ambient air at 430 μmol quanta m−2 s−1, the levels of photochemical quenching (qP) and the excitation capture efficiency of open PSII (F'v/F'm) declined with Mn accumulation in leaves. The present results suggest that excess Mn in leaves affects the activities of the CO2 reduction cycle rather than the potential efficiency of photochemistry, leading to increases in QA reduction state and thermal energy dissipation, and a decrease in quantum yield of PSII in the steady state.  相似文献   

19.
A study was done to determine the effects of vesicular‐arbuscular mycorrhizal (VAM) colonization on drought acclimation of host plants. Safflower ( Carthamus tinctorius L. cv. S555) and wheat ( Triticum aestivum L. cv. Anza) were grown under environmentally controlled conditions with or without the VAM fungus, Glomus etunicatum Becker and Gerd., and were either acclimated (by pre‐exposing plants to a 10–11 day drought period) or unacclimated to drought. Plants from all treatments were then exposed to drought for 9 days, and plant water status and root water uptake were measured. To minimize interactions between drought and P uptake, growth periods were adjusted so that acclimated and unacclimated plants were similar in size when measurements were made. When wheat was acclimated to drought, osmotic adjustment occurred (leaf solute potentials of leaf tissue rehydrated to full turgor were approximately 0.5 MPa lower in acclimated than unacclimated plants); in safflower, osmotic adjustment was minimal when plants were acclimated. Consequently, acclimated wheat plants were able to tolerate drought better than unacclimated plants, and maintained higher leaf water potentials and relative water contents as soil water was depleted. For both safflower and wheat, acclimated plants had higher water use efficiency, and therefore produced more biomass when water availability was limited, than unacclimated plants. However, mycorrhizal colonization did not affect osmotic adjustment, plant water status, water use efficiency or water uptake in either plant species, and therefore had no effect on drought acclimation or resistance.  相似文献   

20.
Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM infection, VAM roots characteristically had a higher protein concentration and, consequently, enhanced microsomal ATPase and acid phosphatase activities on a fresh weight basis compared with NM roots. Morphological and ultrastructural details of VAM plants are discussed in relation to the influence of the VAM symbiosis on P nutrition of potato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号