首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Objective: To investigate whether chronic administration of the long‐acting glucagon‐like peptide‐1 receptor agonist exendin‐4 can elicit sustained reductions in food intake and body weight and whether its actions require an intact leptin system. Research Methods and Procedures: Male lean and obese Zucker (fa/fa) rats were infused intracerebroventricularly with exendin‐4 using osmotic minipumps for 8 days. Results: Exendin‐4 reduced body weight in both lean and obese Zucker rats, maximum suppression being reached on Day 5 in obese (8%) and Day 7 in lean (16%) rats. However, epididymal white adipose tissue weight was not reduced, and only in lean rats was there a reduction in plasma leptin concentration. Food intake was maximally suppressed (by 81%) on Day 3 in obese rats but was reduced by only 18% on Day 8. Similarly, in lean rats food intake was maximally reduced (by 93%) on Day 4 of treatment and by 45% on Day 8. Brown adipose tissue temperature was reduced from Days 2 to 4. Plasma corticosterone was elevated by 76% in lean but by only 28% in obese rats. Discussion: Chronic exendin‐4 treatment reduced body weight in both obese and lean Zucker rats by reducing food intake: metabolic rate was apparently suppressed. These effects did not require an intact leptin system. Neither does the absence of an intact leptin system sensitize animals to exendin‐4. Partial tolerance to the anorectic effect of exendin‐4 in lean rats may have been due to elevated plasma corticosterone and depressed plasma leptin levels, but other counter‐regulatory mechanisms seem to play a role in obese Zucker rats.  相似文献   

2.
The release of somatostatin from the pancreas and stomach following the ingestion of a meal and its increase in the peripheral circulation elicits an attenuation of postprandial hormone secretion such as insulin, pancreatic polypeptide and gastrin and retards the rate at which nutrients enter the circulation. Reduced tissue somatostatin content and/or an attenuated somatostatin release is associated with hyperinsulinism and obesity in certain animal models. In the obese Zucker rat, however, tissue somatostatin levels are increased and therefore the present study was designed to determine the effect of synthetic somatostatin on basal and postprandial arterial insulin levels in obese and lean Zucker rats. Synthetic somatostatin was infused at doses of 0.25, 0.5, 1 and 5 ng/kg X min before and after the intragastric instillation of a liver extract/sucrose test meal. In the obese rats somatostatin at a dose of 5 ng/kg X min reduced basal plasma insulin levels significantly, whereas no effect of somatostatin was observed on basal insulin levels in the lean animals at all doses employed. The integrated postprandial insulin response was reduced during 0.25, 0.5, 1 and 5 ng/kg X min somatostatin in the obese animals, whereas only 0.5 ng/kg X min and higher doses had an inhibitory effect in the lean rats. The degree of inhibition in relation to the postprandial insulin response during saline infusions was 35-230% in the obese and 30-100% in the lean Zucker rats within the range of somatostatin infusions employed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated the effect of subdiaphragmatic vagal deafferentation (SDA) on food intake, body weight gain, and metabolism in obese (fa/fa) and lean (Fa/?) Zucker rats. Before and after recovery from surgery, food intake and body weight gain were recorded, and plasma glucose and insulin were measured in tail-prick blood samples. After implantation of a jugular vein catheter, an intravenous glucose tolerance test (IVGTT) was performed, followed by minimal modeling to estimate the insulin sensitivity index. Food intake relative to metabolic body weight (g/kg(0.75)) and daily body weight gain after surgery were lower (P < 0.05) in SDA than in sham obese but not lean rats. Before surgery, plasma glucose and insulin concentrations were lower (P < 0.05) in lean than in obese rats but did not differ between surgical groups within both genotypes. Four weeks after surgery, plasma glucose and insulin were still similar in SDA and sham lean rats but lower (P < 0.05) in SDA than in sham obese rats. IVGTT revealed a downward shift of the plasma insulin profile by SDA in obese but not lean rats, whereas the plasma glucose profile was unaffected. SDA decreased (P < 0.05) area under the curve for insulin but not glucose in obese rats. The insulin sensitivity index was higher in lean than in obese rats but was not affected by SDA in both genotypes. These results suggest that elimination of vagal afferent signals from the upper gut reduces food intake and body weight gain without affecting the insulin sensitivity index measured by minimal modeling in obese Zucker rats.  相似文献   

4.
The obese Zucker rat has a genetically flawed leptin system and is a model of hyperphagia, obesity, hyperlipidemia, and markedly elevated leptin levels. Dehydroepiandrosterone (DHEA) administration reduces hyperphagia, hyperlipidemia, and obesity in Zucker rats. Since serum leptin levels are associated with body fat, we wondered what the effects of fat pad weight reduction from DHEA administration would have on leptin levels. This experiment investigated the effects of DHEA on intra-abdominal fat pads, serum lipids, and peripheral leptin in male lean and obese Zucker rats that were administered DHEA in their food from 4 weeks of age to 20 weeks. Lean and obese rats received plain chow or chow containing DHEA. Additional chow-fed groups of lean and obese weight-matched controls and obese pair-fed rats helped to control for the reduced body weight, food intake, and fat pad weights seen with DHEA administration. DHEA administration to lean Zucker rats reduced body weight and fat pad weights, but leptin levels showed a lower trend. Among obese rats, both DHEA treatment and pair-feeding reduced body weight and fat pad weights, but only DHEA lowered leptin levels. The weight-matched controls had reductions in fat pad weights similar to the DHEA-treated group, but with increased leptin levels. Thus, DHEA may exert a small, independent effect on leptin levels in this animal model, but the reduction is less than what would be expected.  相似文献   

5.
We have previously reported that attenuation of hyperinsulinemia by diazoxide (DZ), an inhibitor of glucose-mediated insulin secretion, increased insulin sensitivity and reduced body weight in obese Zucker rats. These findings prompted us to investigate the effects of DZ on key insulin-sensitive enzymes regulating adipose tissue metabolism, fatty acid synthase (FAS), and lipoprotein lipase (LPL), as well as on circulating levels of leptin. We also determined the direct effects of diazoxide on FAS in 3T3-L1 adipocytes. Seven-week-old female obese and lean Zucker rats were treated with DZ (150 mg/kg/d) or vehicle (C, control) for a period of 6 wk. Changes in plasma parameters by DZ include significant decreases in triglycerides, free fatty acids, glucose, and insulin, consistent with our previous reports. DZ obese rats exhibited lower plasma leptin levels (P<0.03) compared to their C animals. DZ significantly reduced adipose tissue FAS activity in both lean (P<0.0001) and obese (P<0.01) animals. LPL mRNA content was also decreased significantly in DZ-treated obese animals (P<0.009) as compared to their respective controls without a significant effect on lean animals. The possibility that DZ exerted a direct effect on adipocytes was further tested in cultured 3T3-L1 adipocytes. Although diazoxide (5 microM) alone did not change FAS activity in cultured 3T3-L1 adipocytes, it significantly attenuated insulin's effect on FAS activity (P<0.001). We demonstrate that DZ regulates key insulin-sensitive enzymes involved in regulation of adipose tissue metabolism. These findings suggest that modification of insulin-sensitive pathways can be therapeutically beneficial in obesity management.  相似文献   

6.
The relationship between beta-endorphin(beta-EP)/beta-lipotropin(beta-LP) and insulin secretion in the basal state and after glucose challenge was studied in obese male Zucker rats and their lean littermates. Baseline plasma beta-EP/beta-LP concentrations were similar in the two groups of animals. Baseline plasma insulin and serum glucose concentrations were significantly higher in the obese animals. Following glucose challenge, the increase in plasma beta-EP/beta-LP concentrations was significantly lower in the obese animals than in their lean littermates. Opioid blockade with naloxone failed to alter the baseline hyperinsulinemia and hyperglycemia seen in the obese animals. The data suggest that the hyperinsulinemia in the obese Zucker rat is not due to endogenous hyperendorphinemia as shown in humans with polycystic ovary syndrome. The obese rats showed dissociation between glucose-stimulated plasma levels of beta-EP/beta-LP and insulin levels which may contribute to the hyperinsulinemia and insulin resistance in these animals.  相似文献   

7.
Sucrose polyester, a fat substitute, has shown promise in reducing blood cholesterol and body weight of obese individuals. Effects of this compound in the Zucker rat, a genetic model of obesity, are unknown. Thus, we examined food intake, body weight, body composition, and several metabolic parameters in sera of lean and obese female Zucker rats. Eight-week-old lean and obese animals were given a choice between a control diet (15% corn oil) and fat substitute diet (5% corn oil and 10% sucrose polyester) for 2 days. Next, one-half of the lean and obese groups received control diet; the remaining lean and obese rats received fat substitute diet for 18 days. Cumulative food intake was depressed in fat substitute groups relative to control-fed animals; however, this effect was more predominant in obese animals. Obese rats consuming fat substitute diet (O-FS) gained less weight as compared to obese control-fed animals (O-C). Lean rats given fat substitute (L-FS) did not have significantly different body weights as compared to the L-C group. Fat substitute groups, combined, had lower body fat and higher body water as compared to controls. The O-FS group had lower serum glucose and insulin and higher fatty acid levels compared to the O-C group. There were no differences in serum cholesterol, HDL, or triglyceride levels due to fat substitute diet. These data suggest that the obese Zucker rat is unable to defend its body weight when dietary fat is replaced with sucrose polyester.  相似文献   

8.
The Zucker obese (fa/fa) rat is a model of hypertrophic/hyperplastic obesity. These rats develop marked hyperinsulinemia, insulin resistance, and pancreatic beta-cell hyperplasia. In the present study, chronic (22 weeks) administration of the 17-ketosteroid, dehydroepiandrosterone (DHEA), to obese Zucker rats significantly decreased body weight, and retroperitoneal and parametrial fat pad weights. In addition, beta-cell hyperplasia was reduced as well as pancreatic insulin content. DHEA treatment of lean Zucker rats also reduced body weight, fat depot weight, pancreatic islet diameter, and pancreatic insulin content. These data indicate that DHEA treatment appears to inhibit insulin synthesis and beta-cell proliferation. Whether this is due to a direct effect on the pancreas or due to improvement of peripheral insulin sensitivity remains to be elucidated.  相似文献   

9.
Leptin inhibits feeding, stimulates thermogenesis and decreases body weight. Serotonin reduces food intake when injected into the hypothalamus and may interact with other neurotransmitters in the control of appetite. We therefore investigated the effects of the serotonergic drug fluoxetine, which inhibits serotonin reuptake, on food intake and plasma leptin levels in lean and obese Zucker rats. Fluoxetine significantly reduced food intake in lean and obese rats, both acutely after a single injection (10 mg/kg) and during continuous subcutaneous infusion (10 mg/kg/day for 7 days). Plasma leptin levels were reduced after both 4 hours and 7 days of fluoxetine administration in lean and after 7 days in fatty rats (all p<0.01). We have previously suggested that serotonin may decrease food intake by inhibiting neuropeptide Y neurones, and we further suggest that it also inhibits leptin, possibly by an effect on white adipose tissue.  相似文献   

10.
Hyperinsulinemia and exaggerated insulin response to glucose are among the hallmarks of obesity. However, the role of hyperinsulinemia in the etiology and maintenance of obesity has been controversial. If hyperinsulinemia plays a critical role as proposed, then its reversal may have therapeutic potential. To test this hypothesis, the activity of Ro 23–7637, {4-(2,2-diphenylethenyl)-1-[1-oxo-9-(3-pyridinyl) nonyl]piperidine}, which partially normalizes plasma insulin by an action on pancreatic islets from obese rats, was assessed. When islets were cultured for 2 days with 10 μM Ro 23–7637, a significant reduction in the exaggerated glucose-induced insulin secretion was observed. When islets from lean rats were exposed to Ro 23–7637, no reduction in insulin secretion was observed. The effects of oral administration of Ro 23–7637 were assessed in Zucker and diet-induced obese rats in doses ranging from 5 to 90 mg/kg/day. Dose-related reductions were observed in: 1) glucose-induced insulin secretion; 2) basal insulin concentration; 3) daily food intake; and 4) body weight gain. In diet-induced obese rats, selective mobilization of fat, maintenance of body protein, and decreased energetic efficiency were also observed. An association between the partial normalization of glucose-induced insulin responses and reductions of basal insulin, reduced rates of body weight gain or body weight loss and decreased food intake was observed in obese rats. Therefore, these studies indicate that Ro 23–7637 is an orally active, efficacious antiobesity agent.  相似文献   

11.
Lean (Fa/?) and obese (fa/fa) Zucker rats were adrenalectomized (ADX) in order to assess the contribution of adrenal hormones to insulin resistance of the obese Zucker rat. Glucose utilization was measured using an insulin suppression test. Sham-operated obese rats gained almost twice as much weight as sham-operated lean littermates. However, body weight gain of ADX animals was comparable in both genotypes. It was significantly less than that of the respective sham-operated controls. Body weight differences can be accounted for almost entirely by a marked loss of adipose tissue. Although insulin resistance may be attributable to obesity in part, steroid hormones are thought to be directly antagonistic to insulin for glucose metabolism. Adrenalectomy resulted in a decrease in serum glucose concentrations for both lean and obese Zucker rats compared with their respective sham-operated groups. Serum insulin concentration of lean ADX rats was 23% of sham-operated controls; in obese ADX rats, it was 9% of controls. Elevated levels of steady state serum glucose (SSSG) levels in sham-operated obese rats demonstrate a marked resistance to insulin induced glucose uptake compared with sham-operated lean animals. Adrenalectomy caused a marked improvement in insulin sensitivity of obese rats. The hyperglycemic SSSG levels of the obese rats were reduced 2.5 times by ADX. These results indicate that insulin resistance of Zucker obese rats can be ameliorated by ADX, suggesting adrenal hormones contribute to insulin resistance in these animals.  相似文献   

12.
In parallel with increased prevalence of overweight people in affluent societies are individuals trying to lose weight, often using low-carbohydrate diets. Nevertheless, long-term metabolic consequences of those diets, usually high in (saturated) fat, remain unclear. Therefore, we investigated long-term effects of high-fat diets with different carbohydrate/protein ratios on energy balance and fuel homeostasis in obese (fa/fa) Zucker and lean Wistar rats. Animals were fed high-carbohydrate (HC), high-fat (HsF), or low-carbohydrate, high-fat, high-protein (LC-HsF-HP) diets for 60 days. Both lines fed the LC-HsF-HP diet displayed reduced energy intake compared with those fed the HsF diet (Zucker, -3.7%) or the HC diet (Wistar rats, -12.4%). This was not associated with lower weight gain relative to HC fed rats, because of increased food efficiencies in each line fed HsF and particularly LC-HsF-HP food. Zucker rats were less glucose tolerant than Wistar rats. Lowest glucose tolerances were found in HsF and particularly in LC-HsF-HP-fed animals irrespective of line, but this paralleled reduced plasma adiponectin levels, elevated plasma resistin levels, higher retroperitoneal fat masses, and reduced insulin sensitivity (indexed by insulin-induced hypoglycemia) only in Wistar rats. In Zucker rats, however, improved insulin responses during glucose tolerance testing and tendency toward increased insulin sensitivities were observed with HsF or LC-HsF-HP feeding relative to HC feeding. Thus, despite adverse consequences of LC-HsF diets on blood glucose homeostasis, principal differences exist in the underlying hormonal regulatory mechanisms, which could have benefits for B-cell functioning and insulin action in the obese state but not in the lean state.  相似文献   

13.
The aim of this study was to analyze the effects of chronic administration of high doses of quercetin on metabolic syndrome abnormalities, including obesity, dyslipidemia, hypertension, and insulin resistance. For this purpose, obese Zucker rats and their lean littermates were used. The rats received a daily dose of quercetin (2 or 10 mg/kg of body weight) or vehicle for 10 weeks. Body weight and systolic blood pressure (SBP) were recorded weekly. At the end of the treatment, plasma concentrations of triglycerides, total cholesterol, free-fatty acids (FFAs), glucose, insulin, adiponectin, and nitrate plus nitrite (NOx) were determined. Tumor necrosis factor-alpha (TNF-alpha) production, inducible nitric oxide synthase (iNOS), and endothelial nitric oxide synthase (eNOS) protein expression were analyzed in visceral adipose tissue (VAT). The raised SBP and high plasma concentrations of triglycerides, total cholesterol, FFA, and insulin found in obese Zucker rats were reduced in obese rats that received either of the doses of quercetin assayed. The higher dose also improved the inflammatory status peculiar to this model, as it increased the plasma concentration of adiponectin, reduced NOx levels in plasma, and lowered VAT TNF-alpha production in obese Zucker rats. Furthermore, chronic intake of the higher dose of quercetin enhanced VAT eNOS expression among obese Zucker rats, whereas it downregulated VAT iNOS expression. In conclusion, both doses of quercetin improved dyslipidemia, hypertension, and hyperinsulinemia in obese Zucker rats, but only the high dose produced antiinflammatory effects in VAT together with a reduction in body weight gain.  相似文献   

14.
Tissue and serum somatostatin levels were measured in genetically lean and obese Zucker rats. Immunoreactive somatostatin content was decreased in three central nervous system regions (hypothalamus, septum and preoptic area and thalamus) of obese rats but was increased in cerebral cortex. No differences were observed in antral or colonic somatostatin content but obese animals had significantly elevated pancreatic levels. Portal vein somatostatin-like immunoreactivity in contrast was significantly lower in obese rats. The widespread alterations in tissue and serum somatostatin-like immunoreactivity suggest either a diffuse abnormality of somatostatin physiology or a response to a generalised feature of the obese hyperinsulinaemic state.  相似文献   

15.
Although the rat is usually not considered to be sensitive to photoperiod, under some experimental conditions photoperiod responses are unmasked. In addition, we have observed photoperiod-induced changes in body weight gain in lean and obese Zucker rats. In this experiment, body mass, food intake, body composition, brown adipose tissue (BAT) thermogenic state, and blood concentrations of corticosterone, insulin, and glucose were evaluated under one of two lighting conditions: a short (10 h light: 14 h dark) or a long (14 h light: 10 h dark) photoperiod. Plasma corticosterone and glucose concentrations measured under fasting conditions were unaffected by photoperiod in either genotype. The amount of BAT mitochondrial protein isolated was less in long photoperiod rats. BAT mitochondrial GDP binding was unaffected by photoperiod in the lean rats, but tended to be lower in long photoperiod obese rats than in short photoperiod obese rats. Although, photoperiod had no effect on daily food intake of rats exposed to the short versus long photoperiod, body mass was heaviest in obese rats raised in long photoperiod. Plasma insulin was increased in both lean and obese rats in long photoperiod. In addition, fat storage appeared to shift to internal depots in the lean rats exposed to long photoperiod. Our data demonstrate that photoperiod does have an effect on male Zucker rats with respect to body weight and fat distribution, with the obese rats being more sensitive to changes in photoperiod than the lean rats.  相似文献   

16.
We have previously demonstrated that leptin-mediated activation of the central nervous system (CNS) melanocortin system reduces appetite and increases sympathetic activity and blood pressure (BP). In the present study we examined whether endogenous melanocortin system activation, independent of leptin's actions, contributes to the regulation of BP and metabolic functions in obese Zucker rats, which have mutated leptin receptors. The long-term cardiovascular and metabolic effects of central melanocortin-3/4 receptor (MC3/4R) antagonism with SHU-9119 were assessed in lean (n = 6) and obese (n = 8) Zucker rats. BP and heart rate (HR) were measured 24-h/day by telemetry and an intracerebroventricular cannula was placed in the brain lateral ventricle. After stable control measurements, SHU-9119 was infused intracerebroventricularlly (1 nmol/h) for 10 days followed by a 10-day recovery period. Chronic CNS MC3/4R antagonism significantly increased food intake and body weight in lean (20 ± 1 to 45 ± 2 g and 373 ± 11 to 432 ± 14 g) and obese (25 ± 2 to 35 ± 2 g and 547 ± 10 to 604 ± 11 g) rats. No significant changes were observed in plasma glucose levels in lean or obese rats, whereas plasma leptin and insulin levels markedly increased in lean Zucker rats during CNS MC3/4R antagonism. Chronic SHU-9119 infusion in obese Zucker rats reduced mean arterial pressure (MAP) and HR by 6 ± 1 mmHg and 24 ± 5 beats/min, whereas in lean rats SHU-9119 infusion reduced HR by 31 ± 9 beats/min while causing only a transient decrease in MAP. These results suggest that in obese Zucker rats the CNS melanocortin system contributes to elevated BP independent of leptin receptor activation.  相似文献   

17.
To determine the influence of dietary fructose and glucose on circulating leptin levels in lean and obese rats, plasma leptin concentrations were measured in ventromedial hypothalamic (VMH)-lesioned obese and sham-operated lean rats fed either normal chow or fructose- or glucose-enriched diets (60% by calories) for 2 wk. Insulin resistance was evaluated by the steady-state plasma glucose method and intravenous glucose tolerance test. In lean rats, glucose-enriched diet significantly increased plasma leptin with enlarged parametrial fat pad, whereas neither leptin nor fat-pad weight was altered by fructose. Two weeks after the lesions, the rats fed normal chow had marked greater body weight gain, enlarged fat pads, and higher insulin and leptin compared with sham-operated rats. Despite a marked adiposity and hyperinsulinemia, insulin resistance was not increased in VMH-lesioned rats. Fructose brought about substantial insulin resistance and hyperinsulinemia in both lean and obese rats, whereas glucose led to rather enhanced insulin sensitivity. Leptin, body weight, and fat pad were not significantly altered by either fructose or glucose in the obese rats. These results suggest that dietary glucose stimulates leptin production by increasing adipose tissue or stimulating glucose metabolism in lean rats. Hyperleptinemia in VMH-lesioned rats is associated with both increased adiposity and hyperinsulinemia but not with insulin resistance. Dietary fructose does not alter leptin levels, although this sugar brings about hyperinsulinemia and insulin resistance, suggesting that hyperinsulinemia compensated for insulin resistance does not stimulate leptin production.  相似文献   

18.
Objective: This study examined the effects of topiramate (TPM), a novel neurotherapeutic agent reported to reduce body weight in humans, on the components of energy balance in female Zucker rats. Research Methods and Procedures: A 2 × 3 factorial experiment was performed in which two cohorts of Zucker rats differing in their phenotype (phenotype: lean, Fa/?; obese, fa/fa) were each divided into three groups defined by the dose of TPM administered (dose: TPM 0, vehicle; TPM 15, 15 mg/kg; TPM 60, 60 mg/kg). Results: The reduction in body weight gain induced by TPM in both lean and obese rats reflected a decrease in total body energy gain, which was more evident in obese than in lean rats. Whereas TPM administration did not influence the intake of digestible energy in lean rats, it induced a reduction in food intake in obese animals. In lean, but not in obese rats, apparent energy expenditure (as calculated by the difference between energy intake and energy gain) was higher in rats treated with TPM than in animals administered the vehicle. The low dose of TPM decreased fat gain (with emphasis on subcutaneous fat) without affecting protein gain, whereas the high dose of the drug induced a reduction in both fat and protein gains. The effects of TPM on muscle and fat depot weights were representative of the global effects of TPM on whole body fat and protein gains. The calculated energetic efficiency (energy gain/energy intake) was decreased in both lean and obese rats after TPM treatment. TPM dose independently reduced hyperinsulinemia of obese rats, but it did not alter insulinemia of lean animals. Discussion: The present results provide sound evidence for the ability of TPM to reduce fat and energy gains through reducing energetic efficiency in both lean and obese Zucker rats.  相似文献   

19.
Leptin acts as a satiety factor within the central nervous system by binding to its receptor located in the hypothalamus. A missense mutation of the leptin receptor induces hyperphagia and obesity in the obese Zucker fa/fa rat. Since the CNS is an important target of leptin action, we hypothesized that leptin gene transfer into the lateral cerebral ventricle could efficiently lead to inhibition of food intake and reduction of body weight in obese fa/fa rats as well as in lean animals. A single intracerebroventricular injection of an adenoviral vector containing a cDNA encoding leptin resulted in the expression of leptin in the ependymal cells lining the ventricle and the secretion of leptin into the cerebrospinal fluid (CSF). During the first week after injection, when high concentrations of leptin were produced in the CSF, the reducing effects of leptin on food intake and body weight were comparable in lean and in obese fa/fa rats. The subsequent decline in CSF leptin levels, that was similar in lean and obese fa/fa rats, resulted in the faster resumption of food intake and body weight gain in obese than in lean animals, confirming a reduced sensitivity to leptin in the obese group. The results of this study show that leptin gene delivery into the cerebral ventricles allows for the production of elevated leptin concentrations in CSF, and they support the hypothesis that the impaired sensitivity to leptin may be overcome in obese fa/fa rats.  相似文献   

20.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号