首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel alkaliphilic and moderate halophilic bacterium, designated strain K164T, was isolated from Keke Salt Lake in Qinghai, China. The strain grew with 2.0–20.0% (w/v) NaCl, at 4–50°C and pH 6.5–11.5, with an optimum of 8% (w/v) NaCl, 37°C and pH 10, respectively. The predominant respiratory quinone was menaquinone 6 (MK-6) and the major polar lipid was phosphatidylethanolamine. The major cellular fatty acids were anteiso-C15:0 and iso-C15:0. The genomic DNA G+C content was 50.16 mol. Phylogenetic analysis based on the full-length 16S rRNA gene sequence revealed that strain K164T was a member of the genus Salinicoccus. Strain K164T showed the highest similarity (98.4%) with Salinicoccus alkaliphilus AS 1.2691T and below 97% similarity with other recognized members of the genus in 16S rRNA gene sequence. Level of DNA–DNA relatedness between strain K164T and Salinicoccus alkaliphilus AS 1.2691T was 20.1%. On the basis of its phenotypic characteristics and the level of DNA–DNA hybridization, strain K164T is considered to represent a novel species of the genus Salinicoccus, for which the name Salinicoccus kekensis sp. nov. is proposed. The type strain is K164T (=CGMCC 1.10337T = DSM 23173T).  相似文献   

2.
A novel cold-resistant bacterium, designated YIM 016T, was isolated from a peat bog sample collected from Mohe County, Heilongjiang Province, Northern China and its taxonomic position was investigated using a polyphasic approach. The strain was Gram-positive, aerobic, endospore-forming, motile and rod-shaped. Phylogenetic analyses based on the 16S rRNA gene sequence clearly revealed that strain YIM 016T is a member of the genus Paenibacillus. The strain is closely related to Paenibacillus alginolyticus DSM 5050T, Paenibacillus chondroitinus DSM 5051T and Paenibacillus pocheonensis Gsoil 1138T with similarities of 99.0 %, 97.0 % and 96.3 %, respectively. Meanwhile, the low DNA–DNA relatedness levels between strain YIM 016T and its closely related phylogenetic neighbours demonstrated that this isolate represents a new genomic species in the genus Paenibacillus. Phenotypic and chemotaxonomic tests showed that growth of strain YIM 016T occurred at 4–37 °C, pH 6.0–8.0 and with a NaCl tolerance up to 0.5 % (w/v). The peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid. The whole-cell hydrolysates mainly contained glucose, galactose and ribose. The predominant menaquinone was MK-7 and the major fatty acids were anteiso-C15:0 and iso-C16:0. The DNA G+C content of strain YIM 016T was 51.7 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain YIM 016T could be clearly distinguished from other species of the genus Paenibacillus. It is therefore concluded that strain YIM 016T represents a novel species in the genus Paenibacillus, for which the name Paenibacillus frigoriresistens sp. nov. is proposed. The type strain is YIM 016T (= CCTCC AB 2011150T = JCM 18141T).  相似文献   

3.
A novel actinomycete, designated strain KLBMP 4601T, was isolated from the root of the medicinal plant Curcuma phaeocaulis collected from Sichuan Province, south-west China. The strain produced extensively branched substrate and aerial hyphae that carried straight to flexuous spore chains. Chemotaxonomic properties of this strain were consistent with those of members of the genus Streptomyces. The cell wall of strain KLBMP 4601T contained ll-diaminopimelic acid as the characteristic diamino acid. The major menaquinone was MK-9(H4), with minor amounts of MK-9(H6), MK-9(H8) and MK-10(H2). The major fatty acids were C16:0, iso-C16:0, C18:1ω9c and C16:1, iso G. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain KLBMP 4601T belongs to the genus Streptomyces and is most closely related to Streptomyces armeniacus JCM 3070T (97.9 %), Streptomyces pharmamarensis PM267T (97.6 %) and Streptomyces artemisiae YIM 63135T (97.5 %). The 16S rRNA gene sequence similarity between strain KLBMP 4601T and other members of this genus were lower than 97.5 %. DNA–DNA hybridization studies of strain KLBMP 4601T with the three closest species showed relatedness values of 36.3 ± 4.2 %, 27.3 ± 0.6 %, and 30.9 ± 2.5 %, respectively. On the basis of chemotaxonomic, phenotypic and genotypic characteristics, it is evident that strain KLBMP 4601T represents a novel species of the genus Streptomyces, for which the name Streptomyces phytohabitans sp. nov. is proposed. The type strain is KLBMP 4601T (=KCTC 19892T = NBRC 108772T).  相似文献   

4.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

5.
6.
Two novel Gram-positive actinobacteria, designated H97-3T and H83-5, were isolated from marine sediment samples and their taxonomic positions were investigated by a polyphasic approach. Both strains formed vegetative hyphae in the early phase of growth but the hyphae eventually fragmented into coccoid cells. The peptidoglycan type was found to be A4α. The predominant menaquinone was MK-9(H4), and the major fatty acids were anteiso-C15:0, anteiso-C17:0 and C16:0. The DNA G+C content was 74.0–74.9 mol %. 16S rRNA gene sequencing analysis revealed that strains H97-3T and H83-5 represented novel members of the family Cellulomonadaceae. Their nearest phylogenetic neighbours were the members of the genus Oerskovia, with a similarity of 98.3–98.4 %. However, strains H97-3T and H83-5 were distinguishable from the members of the genus Oerskovia and the other genera of the family Cellulomonadaceae in terms of chemotaxonomic characteristics and phylogenetic relationship. The result of the DNA–DNA hybridization indicated that strains H97-3T and H83-5 belonged to the same species. Therefore, strains H97-3T and H83-5 represent a novel genus and species of the family Cellulomonadaceae, for which the name Sediminihabitans luteus gen. nov., sp. nov. is proposed. The type strain of S. lutes is H97-3T (=NBRC 108568T = DSM 25478T).  相似文献   

7.
An orange-coloured, non-spore-forming, motile and coccus-shaped actinobacterium, designated YIM 75677T, was isolated from a soil sample collected from a dry-hot river valley in Dongchuan county, Yunnan Province, south-west China and its taxonomic position was investigated. Growth of strain YIM 75677T occurred at 12–55 °C, pH 6.0–9.0 and NaCl tolerance up to 2 % (w/v). Cells adhered to agar media and were agglutinated tightly together. The peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid. The whole-cell hydrolysates mainly contained glucose, galactose, mannose and ribose. The predominant menaquinone was MK-9 (H2) and the major fatty acids were anteiso-C15:0 and iso-C15:0. Mycolic acids were not present. The DNA G+C content of strain YIM 75677T was 74.8 mol%. Phylogenetic analyses based on 16S rRNA gene sequence comparisons clearly revealed that strain YIM 75677T represents a novel member of the genus Kineococcus and is closely related to Kineococcus xinjiangensis S2-20T (level of similarity, 98.6 %). Meanwhile, the result of DNA–DNA hybridization between strain YIM 75677T and K. xinjiangensis S2-20T demonstrated that this isolate represented a different genomic species in the genus Kineococcus. On the basis of phylogenetic, phenotypic and chemotaxonomic characteristics, strain YIM 75677T represents a novel species of the genus Kineococcus, for which the name Kineococcus glutineturens sp. nov. is proposed. The type strain is YIM 75677T (=CCTCC AA 209075T = JCM 18126T).  相似文献   

8.
An endophytic actinomycete strain, designated Hhs.015T, was isolated from roots of cucumber seedlings. The endophytic isolate was identified by means of a polyphasic taxonomic approach. On the basis of 16S rRNA gene sequence similarities, strain Hhs.015T was closely related to members of the genus Saccharothrix. DNA–DNA hybridization with the four closest relatives, Saccharothrix longispora NRRL B-16116T, Saccharothrix xinjiangensis NRRL B-24321T, Saccharothrix autraliensis CGMCC 4.1355T and Saccharothrix espanaensis CGMCC 4.1714T, gave similarity values of 33.8, 28.2, 44.1 and 29.5%, respectively, which indicated that strain Hhs.015T represents a novel species of the genus Saccharothrix. This is consistent with the morphological, physiological and chemotaxonomic data. As a whole, these results suggest that strain Hhs.015T represents a novel Saccharothrix species. The name Saccharothrix yanglingensis sp. nov. is proposed, with the type strain Hhs.015T (=CGMCC 4.5627T = KCTC 19722T).  相似文献   

9.
A novel aerobe thermophilic endospore-forming bacterium designated strain AF/04T was isolated from thermal mud located in Euganean hot springs, Abano Terme, Padova, Italy. Strain AF/04T was Gram-positive, motile, rod-shaped, occurring in pairs, or filamentous. The isolate grew between 55 and 67°C (optimum 65°C) and at pH 6.0–7.5 (optimum pH 7.2). The strain was aerobic and grew on maltose, trehalose, and sodium acetate as sole carbon sources. The G + C content of DNA was 53.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain AF/04T falls within the genus Anoxybacillus. Levels of 16S rRNA gene sequence similarity between strain AF/04T and the type strains of recognized Anoxybacillus species ranged from 95 to 99%. Chemotaxonomic data (major isoprenoid quinone–menaquinone-7; major fatty acid iso-C15:0 and anteiso-C17:0) supported the affiliation of strain AF/04T to the genus Anoxybacillus. Based on phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequence analysis and DNA–DNA hybridization data, it was proposed that strain AF/04T (=DSM 17141T = ATCC BAA 1156T) should be placed in the genus Anoxybacillus as the type strain of a novel species, Anoxybacillus thermarum sp. nov.  相似文献   

10.
A marine bacterium designated strain IMCC4074T was isolated from surface seawater collected off Incheon Port, the Yellow Sea, and subjected to a polyphasic taxonomy. The strain was Gram-negative, chemoheterotrophic, slightly halophilic, strictly aerobic, and motile rods. Based on 16S rRNA gene sequence comparisons, the strain was most closely related to Marinobacterium litorale KCTC 12756T (93.9%) and shared low 16S rRNA gene sequence similarities with members of the genus Marinobacterium (91.8–93.9%) and the genus Neptunomonas (93.4%) in the order Oceanospirillales. Phylogenetic analyses showed that this marine isolate formed an independent phyletic line within the genus Marinobacterium clade. The DNA G+C composition of the strain was 56.0 mol% and the predominant constituents of the cellular fatty acids were C16:0 (28.0%), C16:1 ω7c and/or iso-C15:0 2-OH (19.3%), C18:1 ω7c (17.8%), and C17:1 cyclo (12.5%), which differentiated the strain from other Marinobacterium species. Based on the taxonomic data collected in this study, only a distant relationship could be found between strain IMCC4074T and other members of the genus Marinobacterium, thus the strain represents a novel species of the genus Marinobacterium, for which the name Marinobacterium marisflavi sp. nov. is proposed. The type strain of Marinobacterium marisflavi is IMCC4074T (= KCTC 12757T = LMG 23873T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain IMCC4074T is EF468717. An erratum to this article can be found at  相似文献   

11.
Two novel marine actinobacteria, designated as SCSIO 60955T and SCSIO 61214T, were isolated from deep-sea sediment samples collected from the South China Sea. The cells of these organisms stained Gram-negative and were rod shaped. These strains were aerobic, and catalase- and oxidase-positive. Optimal growth occurred at 28 °C and pH 7 over 14 days of cultivation. Both strains possessed phospholipids and phosphoglycolipids. The main menaquinone was MK-7. The major fatty acid was C16:0. The peptidoglycan structure was type A1γ′ (meso-Dpm). Analysis of genome sequences revealed that the genome size of SCSIO 60955T was 3.37 Mbp with G + C content of 76.1%, while the genome size of SCSIO 61214T was 3.67 Mbp with a G + C content of 74.8%. The ANI and 16S rRNA gene analysis results showed that the pairwise similarities between the two strains were 73.4% and 97.7% and that with other recognized Thermoleophilia species were less than 69.1% and 87.8%, respectively. Phylogenetic analysis of the 16S rRNA gene sequences showed that strains SCSIO 60955T and SCSIO 61214T were separately clustered together and formed a well-separated phylogenetic branch distinct from their most related neighbor Gaiella occulta. Based on the data presented here, these two strains are proposed to represent two novel species of a novel genus, for which the name Miltoncostaea marina gen. nov., sp. nov., with the type strain SCSIO 60955T (=DSM 110281T =CGMCC 1.18757T), and Miltoncostaea oceani sp. nov., with the type strain SCSIO 61214T (=KCTC 49527T =CGMCC 1.18758T) are proposed. We also propose that these organisms represent a novel family named Miltoncostaeaceae fam. nov. of a novel order Miltoncostaeales ord. nov.  相似文献   

12.
During the course of our research on new actinobacterial sources, a novel actinomycete strain YIM 63101T was isolated from the surface-sterilized roots of Artemisia annua L. collected from Xishuangbanna, Yunnan province, south-west China and characterized by using a polyphasic approach. The strain formed well-differentiated aerial and substrate mycelia. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain YIM 63101T belongs to the genus Pseudonocardia, with highest similarity to “Pseudonocardia artemisiae YIM 63587T” (99.4%). Sequence similarities between strain YIM 63101T and the other Pseudonocardia species ranged from 97.0 (Pseudonocardia saturnea IMSNU 20052T) to 94.0% (Pseudonocardia compacta IMSNU 20111T). The chemotaxonomic characteristics, such as cell wall diaminopimelic acid, whole-cell sugars, fatty acid components and the major menaquinones suggested that the organism belonged to the genus Pseudonocardia. The G + C content of the genomic DNA was 69.4 mol%. Based on comparative analysis of physiological, biochemical and chemotaxonomic data, including low DNA–DNA hybridization results, it is proposed that strain YIM 63101T represents a novel species of the genus Pseudonocardia, named Pseudonocardia bannaensis sp. nov. The type strain is YIM 63101T (= CCTCC AA 208077 T = DSM 45300T).  相似文献   

13.
A novel pink-coloured, non-spore-forming, non-motile, Gram-negative bacterium, designated YIM 48858T, is described by using a polyphasic approach. The strain can grow at pH 6.5–9 (optimum at pH 7) and 25–30°C (optimum at 28°C). NaCl is not required for its growth. Positive for oxidase and catalase. Urease activity, nitrate reduction, starch and Tween 80 tests are negative reaction. 16S rRNA gene sequence similarity studies showed that strain YIM 48858T is a member of the genus Rubellimicrobium, with similarities of 96.3, 95.7 and 95.5% to Rubellimicrobium mesophilum MSL-20T, Rubellimicrobium aerolatum 5715S-9T and Rubellimicrobium thermophilum DSM 16684T, respectively. Q-10 was the predominant respiratory ubiquinone as in the other members of the genus Rubellimicrobium. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphoglycolipid, glycolipid and the major fatty acids were C18:1 ω7c, C16:0 and C10:0 3-OH, which are very different from the valid published species. The DNA G + C content was 67.7 mol%. Both phylogenetic and chemotaxonomic evidence supports that YIM 48858T is a novel species of the genus Rubellimicrobium, for which the name Rubellimicrobium roseum sp. nov. is proposed. The type strain is YIM 48858T (=CCTCC AA 208029T =KCTC 23202T).  相似文献   

14.
A novel haloalkaliphilic, facultative anaerobic and Gram-negative Salinivibrio-like microorganism (designated strain BAGT) was recovered from a saline lake in Ras Mohammed Park (Egypt). Cells were motile, curved rods, not spore-forming and occurred singly. Strain BAGT grew optimally at 35°C (temperature growth range 25–40°C) with 10.0% (w/v) NaCl [NaCl growth range 6.0–16.0% (w/v)] and at pH 9.0 (pH growth range 6.0–10.0). Strain BAGT had phosphatidylethanolamine (PEA) and phosphatidylglycerol (PG) as the main polar lipids, C16:0 (54.0%) and C16:1 (26.0%) as the predominant cellular fatty acids and Q-8 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BAGT was a member of Salinivibrio genus, with the highest sequence similarities of 99.1, 98.4 and 98.1% to Salinivibrio siamensis JCM 14472T, Salinivibrio proteolyticus DSM 19052T and Salinivibrio costicola subsp. alcaliphilus DSM 16359T, respectively. DNA–DNA hybridization values of strain BAGT with members of Salinivibrio genus were lower than 55.0%. DNA G + C content was 51.0 mol%. On the basis of the polyphasic taxonomic results revealed in this study, strain BAGT should be classified as a novel species of Salinivibrio genus, for which the name Salinivibrio sharmensis sp. nov. is proposed, with the type strain BAGT (=ATCC BAA-1319T = DSM 18182T).  相似文献   

15.
A novel Gram-positive, aerobic, rod-shaped and mycelia-producing bacterial strain, designated KLBMP 1050T, was isolated from the stem of the oil-seed plant Jatropha curcas L. collected from Sichuan Province, south-west China. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate KLBMP 1050T belonged to the genus Nocardioides, with the highest sequence similarity to Nocardioides albus KCTC 9186T (99.38 %) and Nocardioides luteus KCTC 9575T (99.03 %). However, the DNA–DNA relatedness of isolate KLBMP 1050T to these two type strains were 37.5 ± 3.5 and 33 ± 2.3 %, respectively. Strain KLBMP 1050T grew at the pH range 6–11, temperature range 10–32 °C and with 0–12 % NaCl. The physiological properties of strain KLBMP 1050T differ from those of N. albus KCTC 9186T and N. luteus KCTC 9575T. The cell-wall peptidoglycan contained ll-diaminopimelic acid and MK-8(H4) was the major respiratory quinone. The predominant cellular fatty acid of strain KLBMP 1050T was iso-C16:0 (23.3 %). The total DNA G+C content was 70.1 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain KLBMP 1050T represents a novel species of the genus Nocardioides, for which the name Nocardioides panzhihuaensis sp. nov. is proposed. The type strain is KLBMP 1050T (= KCTC 19888T = NBRC 108680T).  相似文献   

16.
A bacterial strain 5YN5-8T was isolated from peat layer on Yongneup in Korea. Cells of strain 5YN5-8T were strictly aerobic, Gram-negative, coccobacilli, non-spore forming, and non-motile. The isolate exhibited optimal growth at 28°C, pH 7.0, and 0–1% NaCl. Results of 16S rRNA gene sequence analyses indicated a close relationship of this isolate to Acinetobacter calcoaceticus (97.8% similarity for strain DSM 30006T). It also exhibited 94.4–97.8% 16S rRNA gene sequence similarities to the validly published Acinetobacter species. The value for DNA-DNA hybridization between strain 5YN5-8T and other members of the genus Acinetobacter ranged from 16 to 28%. Predominant cellular fatty acids were C18:1 ω9c, summed feature 4 containing C15:0 iso 2-OH and/or C16:1 ω7c, and C16:0. The DNA G+C content was 43.9 mol%. Phylogenetic, phenotypic, and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Acinetobacter. The name Acinetobacter brisouii sp. nov. is proposed for the novel species, with 5YN5-8T (=KACC 11602T = DSM 18516T) as the type strain.  相似文献   

17.
A novel bacterium capable of fixing nitrogen was isolated from plantain rhizosphere soil in China. The isolate, designated YN-83T, is Gram-positive, aerobic, motile and rod-shaped (0.4–0.6 μm × 1.9–2.6 μm). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain YN-83T was a member of the genus Cohnella. High similarity of 16S rRNA gene sequence was found between YN-83T and Cohnella ginsengisoli DSM18997T (97.99%), whereas the similarity was below 96.0% between YN-83T and the other Cohnella species. DNA–DNA relatedness between strain YN-83T and C. ginsengisoli DSM18997T was 27.4 ± 6.2%. The DNA G+C content of strain YN-83T was 59.3 mol%. The predominant isoprenoid quinone was MK-7 and the major fatty acids were anteiso-C15:0 (44.3%), iso-C15:0 (11.3%), iso-C16:0 (18.6%) and C16:0 (7.7%). The polar lipids of strain YN-83T consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, lyso- phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. On the basis of phenotypic and chemotaxonomic properties, 16S rRNA gene sequence, G+C content and DNA–DNA hybridization, strain YN-83T represents a novel species of the genus Cohnella, for which the name Cohnella plantaginis sp. nov. (type strain YN-83T = DSM 25424T = CGMCC 1.12047T) is proposed.  相似文献   

18.
A novel Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, aerobic bacterium, designated strain JSM 078120T, was isolated from sea water collected from a tidal flat of Naozhou Island, South China Sea. Growth occurred with 1–15% (w/v) total salts (optimum, 2–4%), at pH 6.0–10.0 (optimum, pH 7.5) and at 4–35°C (optimum, 25–30°C). The major cellular fatty acids were C18:1 ω9c, C16:0, C12:0 3-OH and C16:1 ω7c. The predominant respiratory quinone was ubiquinone Q-9, and the genomic DNA G + C content was 60.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078120T should be assigned to the genus Marinobacter, being related most closely to the type strains of Marinobacter segnicrescens (sequence similarity 98.2%), Marinobacter bryozoorum (97.9%) and Marinobacter gudaonensis (97.6%). The sequence similarities between the novel isolate and the type strains of other recognized Marinobacter species ranged from 96.7 (with Marinobacter salsuginis) to 93.3% (with Marinobacter litoralis). The levels of DNA–DNA relatedness between strain JSM 078120T and the type strains of M. segnicrescens, M. bryozoorum and M. gudaonensis were 25.3, 20.6 and 18.8%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078120T represents a novel species of the genus Marinobacter, for which the name Marinobacter zhanjiangensis sp. nov. is proposed. The type strain is JSM 078120T (= CCTCC AB 208029T = DSM 21077T = KCTC 22280T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078120T is FJ425903.  相似文献   

19.
A novel Gram-negative, catalase- and oxidase-positive, strictly aerobic, non spore-forming, rod-shaped bacterium, designated strain JSM 083058T, was isolated from non-saline forest soil in Hunan Province, China. Growth occurred with 0–8% (w/v) NaCl (optimum, 0.5–3%) at pH 6.0–10.0 (optimum, pH 7.0) and at 5–35°C (optimum, 25–30°C). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 083058T fell within the cluster comprising species of the genus Sphingomonas, clustering with Sphingomonas aestuarii K4T, with which it shared highest 16S rRNA gene sequence similarity (99.2%). The chemotaxonomic properties of strain JSM 083058T were consistent with those of the genus Sphingomonas. The predominant respiratory quinone was ubiquinone Q-10, and the major cellular fatty acids were summed feature 8 (C18:1ω7c/C18:1ω6c), C16:0, summed feature 3 (C16:1ω7c/C16:1ω6c) and C17:1ω6c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and sphingoglycolipid. The genomic DNA G+C content of strain JSM 083058T was 65.5 mol%. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 083058T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hunanensis sp. nov. is proposed. The type strain is JSM 083058T (=CCTCC AA 209011T = DSM 22213T).  相似文献   

20.
An ultraviolet-radiation-resistant, Gram-positive, orange-pigmented, thermophilic and strictly aerobic cocci was isolated from Saharan water hot spring in Tunisia. The newly isolated bacterium, designated HAN-23T, was identified based on polyphasic taxonomy including genotypic, phenotypic and chemotaxonomic characterization. Phylogenetic analysis based on 16S rRNA gene sequences placed this strain within Deinococcus genus. However, strain HAN-23T is different from recognized species of the genus Deinococcus, showing less than 94.0% similarity values to its closest relatives. The predominant cellular fatty acids determined by gas chromatography were iso-C15:0, iso-C17:0 and iso C17:1 ω9c. The major respiratory quinone was MK-8. The DNA G + C content was 66.9 mol%. DNA–DNA hybridization measurements revealed low DNA relatedness (6%) between the novel isolate and its closest neighbor, the type strain Deinococcus geothermalis DSM 11300. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain HAN-23T represents a novel species of the genus Deinococcus, for which the name Deinococcus sahariens sp. nov. is proposed, the type strain being HAN-23T (=DSM 18496T; LMG 23756T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号