首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SEM studies of tracheary elements of subfamily Orontioideae (Lysichiton, Orontium, Symplocarpus) of Araceae show unexpected features. The plants are entirely vesselless. There are small pores in pit membranes of end walls of tracheids in roots and stems, but pit membranes remain intact. End wall pit membranes of stems have a coarse fibrillar texture, somewhat reminiscent of (but different from) those of Nymphaeaceae and Cabombaceae. Acoraceae, which are also vesselless, represent the first branch of the monocot tree, according to phylogenies, and the orontioids form the next branch. Vessellessness is therefore a potentially plesiomorphic feature in monocots, but it may also be related to the highly mesic habitats of Acoraceae and the orontioids. Various other non‐submersed monocots have vesselless or near‐vesselless xylem. Sectioned xylem of Orontioideae is also very suggestive of stages in the development of the pit membranes of both end walls and lateral walls of tracheids: open networks of cellulosic fibrils apparently precede the addition of denser fibrillar meshes, key information in assessing to what extent perforations in scalariform perforation plates of vascular plants may stop formation at the open network stage, and to what extent a thicker pit membrane experiences lysis and disintegration as the vessel element matures.  相似文献   

2.
Tracheary elements from macerations of roots and stems of one species each of five genera of Araceae subfamily Colocasioideae were studied by means of SEM (scanning electron microscopy). All of the genera have vessel elements not merely in roots, as previously reported for the family as a whole, but also in stems. The vessel elements of stems in all genera other than Syngonium are less specialized than those of roots; stem vessel elements are tracheid-like and have porose pit membrane remnants in perforations. The perforations with pit membrane remnants demonstrate probable early stages in evolution of vessels from tracheids in primary xylem of monocotyledons. The vessel elements with such incipient perforation plates lack differentiation in secondary wall thickenings between perforation plate and lateral wall, and such vessel elements cannot be identified with any reliability by means of light microscopy. The discrepancy in specialization between root and stem vessel elements in genera other than Syngonium is ascribed to probable high conductive rates in roots where soil moisture fluctuates markedly, in contrast with the storage nature of stems, in which selective value for rapid conduction is less. Syngonium stem vessels are considered adapted for rapid conduction because the stems in that genus are scandent. Correlation between vessel element morphology and ecology and habit are supported. Although large porosities in vessel elements facilitate conduction, smaller porosities may merely represent rudimentary pit membrane lysis.  相似文献   

3.
Xylem of the orchids studied provided unusually favorable material to demonstrate how conductive tissue evolves in monocotyledons. In the end walls of tracheary elements of many Orchidaceae, remnants of pit membranes were observed with scanning electron microscopy and minimally destructive methods. The full range from tracheids to vessel elements, featuring many intermediate stages, was illustrated with SEM in hand sections of fixed roots, stems, and inflorescence axes of 13 species from four subfamilies. Pit membranes in end walls of tracheary elements are porose to reticulate in roots of all species, but nonporose in stems of Cypripedioideae and Vanilloideae and porose to reticulate in stems of Orchidoideae and Epidendroideae. The distribution pattern of pit membranes and pit membrane remnants in end walls of tracheary elements of orchids parallels the findings of others. The position of Cypripedioideae and Vanilloideae as outgroups to Orchidoideae and Epidendroideae, claimed by earlier authors, is supported by clades based on molecular studies and by our studies. Little hydrolysis of pit membranes in tracheary element end walls was observed in pseudobulbs or inflorescence axes of epidendroids. The pervasiveness of network-like pit membranes of various extents and patterns in end walls of tracheary elements in Orchidaceae calls into question the traditional definitions of tracheids and vessel elements, not merely in orchids, but in angiosperms at large. These two concepts, based on light microscope studies, are blurred in light of ultrastructural studies. More importantly, the intermediate expressions of pit membranes in tracheary element end walls of Orchidaceae and some other families of angiosperms are important as indicators of steps in evolution of conduction with respect to organs (more rapid flow in roots than in succulent storage structures) and habitat (less obstruction to flow correlated with a shift from terrestrial to epiphytic).  相似文献   

4.
慈姑导管仅在根中出现。根的后生木质部中央导管由顶端平截、单穿孔的网纹导管分子连接组成;周围较小的导管分子和管胞有从梯纹管胞向导管分子演化的各种过渡类型;有一至多个梯形穿孔或单穿孔发生在导管分子的端壁或侧壁,并有分枝型导管分子存在,特别在根与主茎连接处尤为明显。管胞亦有分枝与不分枝的类型。  相似文献   

5.
郑玲    徐皓    王玛丽 《植物学报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示, 这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征, 将该亚科的管状分子分为5种类型: (1)梯状穿孔板, 无穿孔的二型性现象; (2)梯状穿孔板, 有穿孔的二型性现象; (3)网状穿孔板; (4)梯状-网状混合的穿孔板; (5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种: 部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料, 发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异, 管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定, 而应根据穿孔板存在于端壁还是侧壁进行判断, 即穿孔板仅存在于端壁的管状分子为导管分子; 端壁和侧壁形态及结构分别相同, 有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J. Sm.) Ching)与双盖蕨属管状分子的特征并不相似, 显示了将单叶双盖蕨属从双盖蕨属独立出来归入对囊蕨亚科的合理性。根据管状分子的特征, 推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属, 而介蕨属 (Dryoathyrium Ching)相对比较原始, 单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

6.
国产对囊蕨亚科(蹄盖蕨科)植物的管状分子   总被引:2,自引:0,他引:2  
郑玲  徐皓  王玛丽 《植物学通报》2008,25(2):203-211
利用扫描电镜观察了国产蹄盖蕨科(Athyriaceae)对囊蕨亚科(Deparioideae)10种植物及双盖蕨属(Diplazium Sw.)3种植物根状茎的管状分子。结果显示,这些管状分子端壁和侧壁的形态及结构分别相同且侧壁具有穿孔板(多穿孔板)。根据穿孔板的形态特征,将该亚科的管状分子分为5种类型:(1)梯状穿孔板,无穿孔的二型性现象:(2)梯状穿孔板,有穿孔的二型性现象:(3)网状穿孔板:(4)梯状-网状混合的穿孔板:(5)大孔状穿孔板。按照纹孔膜残留的程度又可分为3种:部分区域有完整的纹孔膜、残留呈网状或线状以及很少或无纹孔膜残留。结合前人的研究资料,发现蕨类植物的管状分子与被子植物的导管分子在形态和输导机理上存在明显差异,管胞和导管分子不能仅仅根据纹孔膜的存在与否来确定,而应根据穿孔板存在于端壁还是侧壁进行判断,即穿孔板仅存在于端壁的管状分子为导管分子:端壁和侧壁形态及结构分别相同,有或无穿孔板的管状分子为管胞。由此可以推测蕨类植物和裸子植物中输导水分和矿物质的管状分子主要为管胞。单叶双盖蕨属(Triblemma(J.Sm.)Ching)与双盖蕨属管状分子的特征并不相似,显示了将单叶双盖蕨属从双盖蕨属独立出来归人对囊蕨亚科的合理性。根据管状分子的特征,推测假蹄盖蕨属(Athyriopsis Ching)和蛾眉蕨属(Lunathyrium Koidz.)可能是比较进化的属,而介蕨属(Dryoathyrium Ching)相对比较原始,单叶双盖蕨属的系统位置应介于假蹄盖蕨属与介蕨属之间。  相似文献   

7.
8.
Size and function in conifer tracheids and angiosperm vessels   总被引:1,自引:0,他引:1  
The wide size range of conifer tracheids and angiosperm vessels has important consequences for function. In both conduit types, bigger is better for conducting efficiency. The gain in efficiency with size is maximized by the control of conduit shape, which balances end-wall and lumen resistances. Although vessels are an order of magnitude longer than tracheids of the same diameter, they are not necessarily more efficient because they lack the low end-wall resistance of tracheids with torus-margo pits. Instead, vessels gain conducting efficiency over tracheids by achieving wider maximum diameters. End-walls contributed 56-64% to total xylem resistance in both conduit types, indicating that length limits conducting efficiency. Tracheid dimensions may be more limited by unicellularity and the need to supply strength to homoxylous wood than by the need to protect against cavitation. In contrast, the greater size of the multicellular vessel is facilitated by fibers that strengthen heteroxylous wood. Vessel dimensions may be most limited by the need to restrict intervessel pitting and cavitation by air-seeding. Stressful habitats that promote narrow vessels should favor coexistence of conifers and angiosperms. The evolution of vessels in angiosperm wood may have required early angiosperms to survive a phase of mechanic and hydraulic instability.  相似文献   

9.
报道了波温苏铁Bowenia spectabilis Hook.ex Hook. f)根、茎、叶的解剖结构.根的初生结构由表皮、皮层和中柱三部分组成,为二原型木质部.茎具大量薄壁组织,薄壁细胞富含淀粉粒,维管束为外韧并生.叶柄中含有5-8束维管束,呈弧形排列.羽片叶角质层厚,有小叶脉产生,气孔主要分布在下表皮.根、茎、叶木质部中的管胞主要是螺纹和孔纹管胞,有少量纤维分化;茎中管胞的侧壁呈现凹凸不平,部分管胞具有分枝或分叉现象.  相似文献   

10.
Silicified stems with typical cycadalean anatomy are described from specimens collected from the Fremouw Formation (Triassic) in the Transantarctic Mountains of Antarctica. Axes are slender with a large parenchymatous pith and cortex separated by a narrow ring of vascular tissue. Mucilage canals are present in both pith and cortex. Vascular tissue consists of endarch primary xylem, a narrow band of secondary xylem tracheids, cambial zone, and region of secondary phloem. Vascular bundles contain uni- to triseriate rays with larger rays up to 2 mm wide separating the individual bundles. Pitting on primary xylem elements ranges from helical to scalariform; secondary xylem tracheids exhibit alternate circular bordered pits. Traces, often accompanied by a mucilage canal, extend out through the large rays into the cortex where some assume a girdling configuration. A zone of periderm is present at the periphery of the stem. Large and small roots are attached to the stem and are conspicuous in the surrounding matrix. The anatomy of the Antarctic cycad is compared with that of other fossil and extant cycadalean stems.  相似文献   

11.
Cell-specific expression patterns of the Eucalyptus gunnii cinnamoyl coenzymeA reductase (EgCCR) and cinnamyl alcohol dehydrogenase (EgCAD2) promoters were analyzed by promoter-GUS histochemistry in the primary and secondary xylem tissues from floral stems and roots of Arabidopsis thaliana. Expression patterns indicated that the EgCCR and EgCAD2 genes were expressed in a coordinated manner in primary and secondary xylem tissues of the Arabidopsis floral stem and root. Both genes were expressed in all lignifying cells (vessel elements, xylem fibers and paratracheal parenchyma cells) of xylem tissues. The capacity for long-term monolignol production appeared to be related to the cell-specific developmental processes and biological roles of different cell types. Our results suggested that lignification of short-lived vessel elements was achieved by a two-step process involving (i) monolignol production by vessel elements prior to vessel programmed cell death and (ii) subsequent monolignol production by vessel-associated living paratracheal parenchyma cells following vessel element cell death. EgCCR and EgCAD2 gene expression patterns suggested that the process of xylem cell lignification was similar in both primary and secondary xylem tissues in Arabidopsis floral stems and roots.  相似文献   

12.
Specimens of Gahnia sieberiana from Brisbane, Queensland, andof Gahnia clarkei from near Orbost, Victoria, were collectedand examined both morphologically and anatomically. The speciesgrow in wet areas and are of interest because they representthe largest arborescent species known in the Cyperaceae. Stemdiameters up to 120 mm and stems up to 10 m long have been observed.Such long stems tend to be supported by nearby vegetation. Althoughfresh stems are tough and woody, they are brittle. Branchingof the stems is sympodial, and numerous branches are producedby plants growing in exposed habitats. There is less branchingin plants from shaded habitats. Basal shoots may also occur.Adventitious roots develop basally on most plants, but withG. sieberiana, some adventitious roots form near the shoot apexand grow in and around leaf bases. Anatomical features of interestare an endodermoid layer composed of sclereids with elongate,undulated, outer tangential walls that are lignified and suberized,short vessel elements with horizontal to oblique simple perforationplates, and relatively short sclereids surrounding vessel elementsin the vascular bundles. Some vascular bundles are bipolar.The presence of short vessel elements here is in marked contrastto the longer tracheary elements in other arborescent monocotyledons. Arborescence, stem anatomy, Cyperaceae, Gahnia, saw sedge, Monocotyledon, bipolar bundles, morphology, endodermoid layer  相似文献   

13.
We have studied macerated xylem of ferns, supplemented by sections, by means of scanning electron microscopy (SEM) in a series of 20 papers, the results of which are summarized and interpreted here. Studies were based mostly on macerations, but also on some sections; these methods should be supplemented by other methods to confirm or modify the findings presented. Guidelines are cited for our interpretations of features of pit membranes. Fern xylem offers many distinctive features: (1) presence of numerous vessels and various numbers of tracheids in most species; (2) presence of vessels in both roots and rhizomes in virtually all species; (3) presence of specialized end walls in vessels of only a few species; (4) multiple end-wall perforation plates in numerous species; (5) lateral-wall perforation plates in numerous species; (6) porose pit membranes associated with perforation plates in all species; and (7) pit dimorphism, yielding wide membrane-free perforations alternating with extremely narrow pits. Multiple end wall perforation plates and lateral wall perforation plates are associated with the packing of tracheary elements in fascicles in ferns: facets of tips of elements contact numerous facets of adjacent elements; all such contacts are potential sites for conduction by means of perforations. This packing differs from that in primary xylem of dicotyledons and monocotyledons. Porosities in pit membranes represent a way of interconnecting vessel elements within a rhizome or root. In addition, these porosities can interconnect rhizome vessel elements with those of roots, a feature of importance because roots are adventitious in ferns as opposed to those of vascular plants with taproots. Fully-formed or incipient (small-to-medium sized porosities in pit membranes) perforation plates are widespread in ferns. These are believed to represent (1) ease of lysis of pit membranes via pectinase and cellulase; (2) numerous potential sites for perforation plate formation because of fasciculate packing of tracheary elements; (3) evolution of ferns over a long period of time, so that lysis pathways have had time to form; (4) lack of disadvantage in perforation plate presence, regardless of whether habitat moisture fluctuates markedly or little, because ferns likely have maintaining integrity of water columns that override the embolism-confining advantage of tracheids. Although all ferns share some common features, the diversity in xylem anatomy discovered thus far in ferns suggests that much remains to be learned.  相似文献   

14.
Permineralized gigantopterid stems of Vasovinea tianii Li et Taylor gen. et sp. nov. were collected from the Upper Permian of Guizhou Province, China. They are slender and bear prickles, trichomes, and compound hooks. Internally, the stems have a sparganum cortex, eustele, and secondary xylem. The mesarch protoxylem tracheids have annular to helical thickenings, and metaxylem tracheary elements have scalariform and/or transversely elongated, bordered pits, while those of the secondary xylem have scalariform to circular bordered pits. Importantly, the inner part of the secondary xylem has large vessel elements with foraminate-like perforation plates. The hooks and other morphological and anatomical characteristics are similar to those found in gigantopterids, suggesting that Vasovinea is a member of the Gigantopteridales. The vegetative plant is reconstructed from permineralized stems and Gigantopteris-type leaves based on the anatomical similarities and intimate association. The eustele, secondary xylem, and other features support the placement of the order among the seed plants. Ecologically, Vasovinea is suggested to have been a vine or liana that used compound hooks to climb among the trees in a Permian tropical rain forest. The occurrence of vessels could have been an efficient adaptation to allow the slender stems to conduct sufficient water to the large Gigantopteris-type leaves.  相似文献   

15.
用光镜及扫描电镜对两种麻黄根、茎次生木质部进行了解剖研究,结果表明:轴向系统主要由导管和管胞组成。横向系统由细胞壁木质化了的射线薄壁组织细胞组成。导管直径甚小,多孔式穿孔板,并存在导管与管胞之间的管状分子类型,推断麻黄属是裸子植物中最早出现导管的类群;管胞中有一些两头尖、胞腔小、具缘纹孔含纹孔塞的长分子,可视作纤维状管胞,使管胞的输导作用被削弱,而支持功能被加强;射线异型多列,已不具备裸子植物具较窄射线的特点。导管与管胞并存,恰好起到了一般沙生被子植物具宽窄两种类型的导管、复孔率高等典型的对干旱环境的适应特征的作用,茎中导管分子的长度和宽度均小于根,这与茎部需要较强的机械支持力相一致。  相似文献   

16.
Here, hypotheses about stem and root xylem structure and function were assessed by analyzing xylem in nine chaparral Rhamnaceae species. Traits characterizing xylem transport efficiency and safety, mechanical strength and storage were analyzed using linear regression, principal components analysis and phylogenetic independent contrasts (PICs). Stems showed a strong, positive correlation between xylem mechanical strength (xylem density and modulus of rupture) and xylem transport safety (resistance to cavitation and estimated vessel implosion resistance), and this was supported by PICs. Like stems, greater root cavitation resistance was correlated with greater vessel implosion resistance; however, unlike stems, root cavitation resistance was not correlated with xylem density and modulus of rupture. Also different from stems, roots displayed a trade-off between xylem transport safety from cavitation and xylem transport efficiency. Both stems and roots showed a trade-off between xylem transport safety and xylem storage of water and nutrients, respectively. Stems and roots differ in xylem structural and functional relationships, associated with differences in their local environment (air vs soil) and their primary functions.  相似文献   

17.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

18.
Wide-band tracheids are a specialized tracheid type in which an annular or helical secondary wall projects deeply into the cell lumen. They are short, wide and spindle-shaped, and their bandlike secondary walls cover little of the primary wall, leaving most of it available for water diffusion. Wide-band tracheids appear to store and conduct water while preventing the spread of embolisms. They may be the most abundant tracheary element in the xylem, but they are always accompanied by at least a few vessels. Typically, fibers are absent wherever wide-band tracheids are present. Wide-band tracheids occur in the primary and secondary xylem of succulent stems, leaves and roots in genera of all three subfamilies of Cactaceae but were not found in the relictual genusPereskia, which lacks succulent tissues. In the large subfamily Cactoideae, wide-band tracheids occur only in derived members, and wide-band tracheids of North American Cactoideae are narrower and are aligned in a more orderly radial pattern than those of South American Cactoideae. Wide-band tracheids probably arose at least three times in Cactaceae.  相似文献   

19.
Molecular studies indicate that Penaeaceae, Oliniaceae, and the monospecific families Alzateaceae and Rhynchocalycaceae form a clade of Myrtales. Of these four families, Penaeaceae have tracheids with vestured pits, whereas the others have septate fibers lacking vestures; all have vestured pits in vessels. Tracheid presence in Penaeaceae may be related to the arid South African habitats of the family. Presence of vestures on tracheids in families with vestured vessel pits is one indication that imperforate elements are tracheids and are conductive cells, whereas fiber-tracheids and libriform fibers are non-conductive. Tracheids occur widely in angiosperms and may be plesiomorphies or apomorphies. Combretaceae, the first branch of the Myrtales clade, has a great diversity of vesture features in vessels compared to the Penaeaceae alliance families. Alzatea has vestures that spread over the inside of the vessels, whereas in most taxa of the alliance, vestures are confined to the pit cavities and pit apertures. Vestures in the alliance tend to be globular in shape, and are bridged together by strands of wall material. Lignotubers and roots in Penaeaceae have vestures much like those in stems. Only a few species and genera (notably Alzatea) of the alliance have vesture features the pattern of which correlates with the current taxonomic system. Vestured pits should be viewed from the inside surface of vessels as well as the outer surface, and although sectional views of vestured pits are infrequent, they are very informative. Studies that explore diversity from one order or family to another are needed and offer opportunities for understanding the evolutionary significance of this feature.  相似文献   

20.
Tracheary elements of the nodal plexus in stems of Cabomba aquatica and C. caroliniana have pores in the primary wall as seen with scanning electron microscopy (SEM); these pores are adjacent to the helical thickening bands. Presence of the pores qualifies these tracheary elements as vessel elements, in agreement with our previous criteria in Nymphaeaceae, but the vessel elements differ from any hitherto described for vascular plants and thereby enhance the likelihood of polyphylesis of vessels in dicotyledons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号