首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Viability, histology and ultrastructure of normal cells and cells of different degrees of malignancy after interaction with dopamine as well as the ability of these cells and isolated G-actin in model experiments to stain by Falck technique were studied. It is shown that dopamine, virtually having no effect on the viability of the “normal” non-tumorigenic transformed cells, noticeably reduces cell viability of slightly tumorigenic cells, causes a significant reduction in viability of attachable cancerous cells and a very significant decrease in cell viability of cancerous cells growing in suspension. The intensity of fluorescence of the cytosol in cells treated with dopamine, has been very high and varied in different cultures, and that of isolated actin directly depended on its concentration. Common to all cell morphological feature of damage from the action of dopamine and the putative substrate of fluorescence was actodopamine filaments network strands (identified on the structure and size), which appears in the cytosol loci, where they were absent in control. The data show that dopamine can be used as an oncotherapeutic remedy and diagnostic tool interacting with G-actin as a cellular target.  相似文献   

2.
Numerous studies have described the F-actin cytoskeleton; however, little information relevant to C-actin is available. The actin pools of bovine aortic endothelial cells were examined using in situ and in vitro conditions and fluorescent probes for G-(deoxyribonuclease I.0.3 μM) or F-actin (phalloidin, 0.2 μM). Cells in situ displayed a diffuse G-actin distribution, while F-actin was concentrated in the cell periphery and in fine stress fibers that traversed some cells. Cells of subconfluent or just confluent cultures demonstrated intense fluorescence, with many F-actin stress fibers. Postconfluent cultures resembled the condition in situ; peripheral F-actin was prominent, traversing actin stress fibers were greatly reduced and fluorescent intensity was diminished. Postconfluency had little influence on G-actin. with only an enhancement in the intensity of G-actin punctate fluorescence. When post-confluent cultures were incubated with cytochalasin D (15 min; 10--4 M), F-actin networks were disrupted and actin punctate and diffuse fluorescence increased. G-actin fluorescence was not altered by the incubation. Although its unstructured nature may account for the minor changes observed, the stability of the G-actin pool in the presence of notable F-actin modulations suggested that filamentous actin was the key constituent involved in these actin cytoskeletal alterations. A separate finding illustrated that the concomitant use of actin probes with image enhancement and fluorescent microscopy could reveal simultaneously the G- and F-actin pools within the same cell.  相似文献   

3.
The interaction of dopamine with model membranes, isolated G-actin, and living cells, such as Mauthner neurons and fibroblast-like BHK-21 cells has been studied. It was found that in vitro dopamine passes through the phospholipid membrane and directly polymerizes G-actin due to incorporation into threads as their integral part. In in vivo conditions, it penetrates inside the cell and induces the appearance of a network of actin filaments in loci rich in globular actin. The data suggest that there exists a mechanism of dopamine interaction with living cells, which is based on direct polymerization of cytosolic G-actin as its cellular target. The reorganization of the actin cytoskeleton leads to changes in the morphofunctional status of cells.  相似文献   

4.
Quantitative and qualitative changes in cellular actin were followed during differentiation of a myeloid leukemia cell line, namely Ml, which was inducible with conditioned medium (CM). During 3 d of incubation with CM, when the Ml cells differentiated to macrophages and lost their mitotic activity, the actin content, F-actin ratio in total actin, and the actin synthesis showed an increase. A greater difference before and after differentiation was found in the ability of G-actin to polymerize. Actin harvested from CM-treated cells showed a greater ability to polymerize, depending on the increased concentration of MgCl2 and/or KCl and proteins, as compared with the actin from untreated Ml cells. Actin harvested from the Mml cell line, a macrophage line, had a particularly high polymerizability with or without CM treatment. In contrast, the actin from the D- subline, which is insensitive to CM, showed almost no polymerization.  相似文献   

5.
We have investigated the effects of soybean agglutinin on the cytoskeletal element actin in differentiated Caco-2 cells. The actin cytoskeleton of the cells was visualized by fluorescence microscopy using 7-nitrobenz-2-oxa-1, 3-diazole phallacidin as a specific marker for F-actin. Compared with control Caco-2 cells no changes in the fluorescence pattern were observed after incubation with soybean agglutinin. However, using the deoxyribonuclease-I inhibition assay a dose-related response was noted in the increase of intracellular G-actin after a 2-hour incubation period with soybean agglutinin. Already after exposure for 15 min to soybean agglutinin a decrease in intracellular F-actin was demonstrable. This apparent depolymerization could be prevented by incubating the Caco-2 cells with soybean agglutinin and the appropriate monosaccharide simultaneously. The increase in the amount of G-actin appeared to be correlated with a shortening of microvilli on the Caco-2 cells.  相似文献   

6.
研究了醛糖还原酶抑制剂Tolrestat对高浓度葡萄糖(HG)所致肾小球系膜细胞(MC)肌动蛋白(actin)组装的影响。结果证明,与正常浓度葡萄糖(NG)相比,在HG培养的MC,F-actin失去束状外观呈不规则网状,显示F-actin部分去组装;F-actin荧光强度降低,G-actin荧光强度升高和F-/G-actin荧光强度比值下降。Tolrestat加入培养后,明显防止HG引起的F-actin去组装及F-和G-actin荧光强度的变化。提示多元醇通路激活在HG引起的MCactin去组装改变中起一定作用。  相似文献   

7.
Intramonomer fluorescence energy transfer between the donor epsilon-ATP bound to the nucleotide-binding site and the acceptor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole bound to Cys-373 in G-actin was measured by steady-state fluorimetry. Assuming for the orientation factor its dynamic limit K2 = 2/3, the donor and acceptor distance in a G-actin molecule was calculated to be about 3 nm. The intermonomer energy transfer in F-actin occurring between the donor bound to an actin monomer and the acceptor bound to the nearest-neighbour actin monomer was also measured and the distance was calculated to be about 4 nm. The kinetics of the actin polymerization process was studied by following the decrease in fluorescence intensity upon addition of salts to G-actin solution. The initial velocity of the fluorescence intensity change was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to the square of the initial G-actin concentration. The temperature dependence of the velocity was proportional to exp(-10/RT). These results indicated that the initial fluorescence intensity change corresponds to monomer-dimer transformation and its activation enthalpy was 10 kcal/mol.  相似文献   

8.
To understand the intracellular role of G-actin concentration in stimulus-induced actin assembly and lamellipodium extension during cell migration, we developed a novel technique for quantifying spatiotemporal changes in G-actin concentration in live cells, consisting of sequential measurements of fluorescent decay after photoactivation (FDAP) of Dronpa-labeled actin. Cytoplasmic G-actin concentrations decreased by ~40% immediately after cell stimulation and thereafter the cell area extended. The extent of stimulus-induced G-actin loss and cell extension correlated linearly with G-actin concentration in unstimulated cells, even at concentrations much higher than the critical concentration of actin filaments, indicating that cytoplasmic G-actin concentration is a critical parameter for determining the extent of stimulus-induced G-actin assembly and cell extension. Multipoint FDAP analysis revealed that G-actin concentration in lamellipodia was comparable to that in the cell body. We also assessed the cellular concentrations of free G-actin, profilin- and thymosin-β4-bound G-actin, and free barbed and pointed ends of actin filaments by model fitting of jasplakinolide-induced temporal changes in G-actin concentration.  相似文献   

9.
Chemically tritiated actin from rabbit skeletal muscle was used to investigate the association of G-actin with the red cell membrane. The tritiated actin was shown to be identical to unmodified actin in its ability to polymerize and to activate heavy meromyosin ATPase. Using sealed and unsealed red cell ghosts we have shown that G-actin binds to the cytoplasmic but not the extracellular membrane surface of ghosts. Inside-out vesicles which have been stripped of endogenous actin and spectrin by low-ionic-strength incubation bind little G-actin. However, when a crude spectrin extract containing primarily spectrin, actin, and band 4.1 is added back to stripped vesicles, subsequent binding of G-actin can be increased up to 40-fold. Further, this crude spectrin extract can compete for and abolish G-actin binding to unsealed ghosts. Actin binding to ghosts increases linearly with added G-actin and requires the presence of magnesium. In addition, actin binding is inhibited by cytochalasin B and DNAase I. Negative staining reveals an abundance of actin filaments formed when G-actin is added to reconstituted inside-out vesicles but none when it is added to unreconstituted vesicles. These observations indicate that added G-actin binds to the red cell membrane via filament formation nucleated by some membrane component at the cytoplasmic surface.  相似文献   

10.
This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo 1H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by ∼5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.  相似文献   

11.
This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo (1)H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by ~5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.  相似文献   

12.
Recent work reveals that actin acetylation modification has been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight the effects of calreticulin on actin acetylation and cell injury induced by microwave radiation in human microvascular endothelial cell (HMEC). HMEC injury was induced by high-power microwave of different power density (10, 30, 60, 100 mW/cm2, for 6 min) with or without exogenous recombinant calreticulin. The cell injury was assessed by lactate dehydrogenase (LDH) activity and Cell Counting Kit-8 in culture medium, migration ability, intercellular junction, and cytoskeleton staining in HMEC. Western blotting analysis was used to detected calreticulin expression in cytosol and nucleus and acetylation of globular actin (G-actin). We found that HMEC injury was induced by microwave radiation in a dose-dependent manner. Pretreatment HMEC with calreticulin suppressed microwave radiation-induced LDH leakage and increased cell viability and improved microwave radiation-induced decrease in migration, intercellular junction, and cytoskeleton. Meanwhile, pretreatment HMEC with exogenous calreticulin upregulated the histone acetyltransferase activity and the acetylation level of G-actin and increased the fibrous actin (F-actin)/G-actin ratio. We conclude that exogenous calreticulin protects HMEC against microwave radiation-induced injury through promoting actin acetylation and polymerization.  相似文献   

13.
State of actin in gastric parietal cells   总被引:1,自引:0,他引:1  
Remodeling of theapical membrane-cytoskeleton has been suggested to occur when gastricparietal cells are stimulated to secrete HCl. The present experimentsassayed the relative amounts of F-actin and G-actin in gastric glandsand parietal cells, as well as the changes in the state of actin onstimulation. Glands and cells were treated with a Nonidet P-40extraction buffer for separation into detergent-soluble (supernatant)and detergent-insoluble (pellet) pools. Two actin assays were used toquantitate actin: the deoxyribonuclease I binding assay to measureG-actin and F-actin content in the two pools and a simple Western blotassay to quantitate the relative amounts of actin in the pools.Functional secretory responsiveness was assayed by aminopyrineaccumulation. About 5% of the total parietal cell protein is actin,with about 90% of the actin present as F-actin. Stimulation of acidsecretion resulted in no measurable change in the relative amounts ofG-actin and cytoskeletal F-actin. Treatment of gastric glands withcytochalasin D inhibited acid secretion and resulted in a decrease inF-actin and an increase in G-actin. No inhibition of parietal cellsecretion was observed when phalloidin was used to stabilize actinfilaments. These data are consistent with the hypothesis thatmicrofilamentous actin is essential for membrane recruitment underlyingparietal cell secretion. Although the experiments do not eliminate theimportance of rapid exchange between G- and F-actin for the secretoryprocess, the parietal cell maintains actin in a highly polymerizedstate, and no measurable changes in the steady-state ratio of G-actin to F-actin are associated with stimulation to secrete acid.

  相似文献   

14.
HBHA is a mycobacterial cell surface protein that mediates adhesion to epithelial cells and that has been implicated in the dissemination of Mycobacterium tuberculosis (Mtb) from the site of primary infection. In this work, we demonstrate that HBHA is able to bind G-actin whereas its shorter form, deprived of the lysine-rich C-terminal region (HBHAΔC), does not bind. Consistently, interaction of actin with HBHA is competitive with heparin binding. Notably, we also observe that HBHA, but not HBHAΔC, clearly hampers G-actin polymerisation into F-actin filaments. Since Mtb escapes from the phagosome into the cytosol of host cells, where it can persist and replicate, HBHA is properly localised on the bacterial surface to regulate the dynamic process of cytoskeleton formation driven by actin polymerisation and depolymerisation.  相似文献   

15.
A proteomic approach was used to identify 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2) protein targets in human neuroblastoma SH-SY5Y cells. By using biotinylated 15d-PGJ2, beta-actin was found as the major adducted protein; at least 12 proteins were also identified as minor biotin-positive spots, falling in different functional classes, including glycolytic enzymes (enolase and lactate dehydrogenase), redox enzymes (biliverdin reductase), and a eukaryotic regulatory protein (14-3-3gamma). 15d-PGJ2 induced marked morphological changes in the actin filament network and in particular promoted F-actin depolymerization as confirmed by Western blot analysis. By using a mass spectrometric approach, we found that 15d-PGJ2 reacts with isolated G-actin in a 1:1 stoichiometric ratio and selectively binds the Cys374 site through a Michael adduction mechanism. Computational studies showed that the covalent binding of 15d-PGJ2 induces a significant unfolding of actin structure and in particular that 15d-PGJ2 distorts the actin subdomains 2 and 4, which define the nucleotide binding sites impeding the nucleotide exchange. The functional effect of 15d-PGJ2 on G-actin was studied by polymerization measurement: in the presence of 15d-PGJ2, a lower amount of F-actin forms, as followed by the increase in pyrenyl-actin fluorescence intensity, as the major effect of increasing 15d-PGJ2 concentrations occurs on the maximum extent of actin polymerization, whereas it is negligible on the initial rate of reaction. In summary, the results here reported give an insight into the role of 15d-PGJ2 as a cytotoxic compound in neuronal cell dysfunction. Actin is the main protein cellular target of 15d-PGJ2, which specifically binds through a Michael adduction to Cys374, leading to a protein conformational change that can explain the disruption of the actin cytoskeleton, F-actin depolymerization, and impairment of G-actin polymerization.  相似文献   

16.
The effect of cytochalasin D, which is known to disrupt specifically actin cytoskeleton, on DNA replication was studied. The incubation of cultured mouse embryonic fibroblasts (MEF), cells of Balb/3T3 line and cells of minimally transformed clones 12 MC and 6 st/T CAK-7 line with cytochalasin D leads to inhibition of DNA synthesis. A complete inhibition of labeled index in MEF culture was observed after an 8 day incubation in cytochalasin D. Part of cells of clones 12 MC and 6 st/T were insensitive to cytochalasin D and continued to enter to S-phase even after a 10 day incubation. The transfer of cells into a fresh medium leads to a rapid restoration of DNA synthesis. Strongly transformed L cells were almost insensitive to cytochalasin D. Thus, the reorganization of actin cytoskeleton caused by cytochalasin D can inhibit the cycle of normal and minimally transformed cells. In the course of neoplastic progression, in the transformed cells there is a loss of dependence of cell proliferation on microfilament system.  相似文献   

17.
研究了维生素E(VE)和伊那普利(EN)对高浓度葡萄糖(HG)所致肾小球系膜细胞(MC)肌动蛋白组装的影响。结果证明,MC在HG培养时,F-actin失去粗大束状外观呈不规则网状,显示F-actin部分去组装。与正常浓度葡萄糖(NG)培养的MC相比,HG引起F-actin荧光强度降低,G-actin荧光强度升高和F/G-actin荧光强度比值下降。VE和EN加入培养后,HG引起的F-actin部分去组装及F-和G-actin荧光强度的变化均恢复正常,提示,VE和EN可防止HG引起的MC actin去组装。  相似文献   

18.
We previously reported association of eNOS with actin increases eNOS activity. In the present study, regulation of activity of eNOS by actin cytoskeleton during endothelial growth was studied. We found eNOS activity in PAEC increased when cells grew from preconfluence to confluence. eNOS activity was much greater in PAEC in higher density than those in lower density, suggesting increase in eNOS activity during cell growth is caused by increase in cell density. Although eNOS protein contents were also increased when endothelial cells grew from preconfluence to confluence, magnitude of increase in eNOS activity was much higher than increase in eNOS protein content, suggesting posttranslational mechanisms played an important role in regulation of eNOS activity during endothelial growth. Confocal fluorescence microscopy revealed eNOS was colocalized with G-actin in preconfluent cells in perinuclear region, with both G-actin in perinuclear area and cortical F-actin in plasma membrane in confluent cells. There was more beta-actin coimmunoprecipitated with eNOS in Triton X-100-soluble fraction in confluent cells in later growth phase and in high density. Decrease in eNOS association with beta-actin by silencing beta-actin expression using beta-actin siRNA causes inhibition of eNOS activity, NO production, and endothelial monolayer wound repair in PAEC. Moreover, PAEC incubation with cytochalasin D and jasplakinolide resulted in increases in eNOS/actin association and in eNOS activity without changes in eNOS protein content. Yeast two-hybrid experiments suggested strong association between eNOS oxygenase domain and beta-actin. These results indicate increase in eNOS association with actin is responsible for greater eNOS activity in confluent PAEC.  相似文献   

19.
The fast and transient polymerization of actin in nonmuscle cells after stimulation with chemoattractants requires strong nucleation activities but also components that inhibit this process in resting cells. In this paper, we describe the purification and characterization of a new actin-binding protein from Dictyostelium discoideum that exhibited strong F-actin capping activity but did not nucleate actin assembly independently of the Ca2+ concentration. These properties led at physiological salt conditions to an inhibition of actin polymerization at a molar ratio of capping protein to actin below 1:1,000. The protein is a monomer, with a molecular mass of approximately 100 kDa, and is present in growing and in developing amoebae. Based on its F-actin capping function and its apparent molecular weight, we designated this monomeric protein cap100. As shown by dilution-induced depolymerization and by elongation assays, cap100 capped the barbed ends of actin filaments and did not sever F-actin. In agreement with its capping activity, cap100 increased the critical concentration for actin polymerization. In excitation or emission scans of pyrene-labeled G-actin, the fluorescence was increased in the presence of cap100. This suggests a G-actin binding activity for cap100. The capping activity could be completely inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2), and bound cap100 could be removed by PIP2. The inhibition by phosphatidylinositol and the Ca(2+)-independent down-regulation of spontaneous actin polymerization indicate that cap100 plays a role in balancing the G- and F-actin pools of a resting cell. In the cytoplasm, the equilibrium would be shifted towards G-actin, but, below the membrane where F-actin is required, this activity would be inhibited by PIP2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号