首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bisphosphonates are potent antiresorptive drugs commonly employed in the treatment of metabolic bone diseases. Despite their frequent use, the mechanisms of bisphosphonates on bone cells have largely remained unclear. Receptor activator of nuclear factor-kappaB ligand (RANKL) is essential for osteoclast formation and activation, whereas osteoprotegerin (OPG) neutralizes RANKL. Various osteotropic drugs have been demonstrated to modulate osteoblastic production of RANKL and OPG. In this study, we assessed the effects of the bisphosphonates pamidronate (PAM) and zoledronic acid (ZOL) on OPG mRNA steady-state levels (by semiquantitative RT-PCR) and protein production (by ELISA) in primary human osteoblasts (hOB). PAM increased OPG mRNA levels and protein secretion by hOB by up to 2- to 3-fold in a dose-dependent fashion with a maximum effect at 10(-6) M (P < 0.001) after 72 h. Similarly, ZOL enhanced OPG gene expression and protein secretion by hOB in a dose-dependent fashion with a maximum effect at 10(-8) M after 72 h, consistent with the higher biological potency of ZOL. Time course experiments indicated a stimulatory effect of PAM and ZOL on osteoblastic OPG protein secretion by 6-fold, respectively (P < 0.001). Pretreatment with PAM and ZOL prevented the inhibitory effects of the glucocorticoid dexamethasone on OPG mRNA and protein production. Analysis of cellular markers of osteoblastic differentiation revealed that PAM and ZOL induced type I collagen secretion and alkaline phosphatase activity by 2- and 4-fold, respectively (P < 0.0001 by ANOVA). In conclusion, our data suggest that bisphosphonates modulate OPG production by normal human osteoblasts, which may contribute to the inhibition of osteoclastic bone resorption. Since, OPG production increases with osteoblastic cell maturation, enhancement of OPG by bisphosphonates could be related to their stimulatory effects on osteoblastic differentiation.  相似文献   

2.
Recently, HMG-CoA reductase inhibitors (statins), potent inhibitors of cholesterol biosynthesis, have been linked to protective effects on bone metabolism. Because of their widespread use, prevention of bone loss and fractures would be a desirable side effect. However, the mechanisms how statins may affect bone metabolism are poorly defined. Here, we evaluated the effect of atorvastatin on osteoblastic production of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG), cytokines that are essential for osteoclast cell biology. While RANKL enhances osteoclast formation and activation, thereby, promoting bone loss, OPG acts as a soluble decoy receptor and antagonizes the effects of RANKL. In primary human osteoblasts (hOB), atorvastatin increased OPG mRNA levels and protein secretion by hOB by up to three fold in a dose-dependent manner with a maximum effect at 10(-6) M (P < 0.001). Time course experiments indicated a time-dependent stimulatory effect of atorvastatin on OPG mRNA levels after 24 h and on OPG protein secretion after 48-72 h (P < 0.001). Treatment of hOB with substrates of cholesterol biosynthesis that are downstream of the HMG-CoA reductase reaction (mevalonate, geranylgeranyl pyrophosphate) reversed atorvastatin-induced enhancement of OPG production. Of note, atorvastatin abrogated the inhibitory effect of glucocorticoids on OPG production. Treatment of hOB with atorvastatin enhanced the expression of osteoblastic differentiation markers, alkaline phosphatase and osteocalcin. In summary, our data suggest that atorvastatin enhances osteoblastic differentiation and production of OPG. This may contribute to the bone-sparing effects of statins.  相似文献   

3.
The OPG/RANKL/RANK cytokine system is essential for osteoclast biology. Various studies suggest that human metabolic bone diseases are related to alterations of this system. Here we summarize OPG/RANKL/RANK abnormalities in different forms of osteoporoses and hyperparathyroidism. Skeletal estrogen agonists (including 17beta-estradiol, raloxifene, and genistein) induce osteoblastic OPG production through estrogen receptor-alpha activation in vitro, while immune cells appear to over-express RANKL in estrogen deficiency in vivo. Of note, OPG administration can prevent bone loss associated with estrogen deficiency as observed in both animal models and a small clinical study. Glucocorticoids and immunosuppressants concurrently up-regulate RANKL and suppress OPG in osteoblastic cells in vitro, and glucocorticoids are among the most powerful drugs to suppress OPG serum levels in vivo. As for mechanisms of immobilization-induced bone loss, it appears that mechanical strain inhibits RANKL production through the ERK 1/2 MAP kinase pathway and up-regulates OPG production in vitro. Hence, lack of mechanical strainduring immobilization may favor an enhanced RANKL-to-OPG ratio leading to increased bone loss. As for hyperparathyroidism, chronic PTH exposure concurrently enhances RANKL production and suppresses OPG secretion through activation of osteoblastic protein kinase A in vitro which would favour increased osteoclastic activity. In sum, the capacity for OPG to antagonize the increases in bone loss seen in many rodent models of metabolic bone disease implicates RANKL/OPG imbalances as the likely etiology and supports the potential role for a RANKL antagonist as a therapeutic intervention in these settings.  相似文献   

4.
Bone is continuously remodeled through resorption by osteoclasts and the subsequent synthesis of the bone matrix by osteoblasts. Cell-to-cell contact between osteoblasts and osteoclast precursors is required for osteoclast formation. RANKL (receptor activator of nuclear factor-kappaB ligand) expressed on osteoblastic cell membranes stimulates osteoclastogenesis, while osteoprotegerin (OPG) secreted by osteoblasts inhibits osteoclastogenesis. Although polyunsaturated fatty acids (PUFAs) have been implicated in bone homeostasis, the effects thereof on OPG and RANKL secretion have not been investigated. MC3T3-E1 osteoblasts were exposed to the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA); furthermore, the bone-active hormone parathyroid hormone (PTH) and the effects thereof were tested on OPG and RANKL secretion. Prostaglandin E(2) (PGE(2)), a product of AA metabolism that was previously implicated in bone homeostasis, was included in the study. AA (5.0-20 microg/ml) inhibited OPG secretion by 25-30%, which was attenuated by pretreatment with the cyclooxygenase blocker indomethacin, suggesting that the inhibitory effect of AA on OPG could possibly be PGE(2)-mediated. MC3T3-E1 cells secreted very low basal levels of RANKL, but AA stimulated RANKL secretion, thereby decreasing the OPG/RANKL ratio. DHA suppressed OPG secretion to a smaller extent than AA. This could, however, be due to endogenous PGE(2) production. No RANKL could be detected after exposing the MC3T3-E1 cells to DHA. PTH did not affect OPG secretion, but stimulated RANKL secretion. This study demonstrates that AA and PTH reduce the OPG/RANKL ratio and may increase osteoclastogenesis. DHA, however, had no significant effect on OPG or RANKL in this model.  相似文献   

5.
《Phytomedicine》2014,21(8-9):1032-1036
Puerarin, a daidzein-8-C-glucoside, is the major isoflavone glycoside found in the Chinese herb radix of Pueraria lobata (Willd.) Ohwi, and has received increasing attention because of its possible role in the prevention of osteoporosis. In our previous studies, puerarin reduced the bone resorption of osteoclasts and promoted long bone growth in fetal mouse in vitro. Further study confirmed that puerarin stimulated proliferation and differentiation of osteoblasts in rat. However, the mechanisms underlying its actions on human bone cells have remained largely unknown. Here we show that puerarin concurrently stimulates osteoprotegerin (OPG) and inhibits receptor activator of nuclear factor-κB ligand (RANKL) and Interleukin-6 (IL-6) production by human osteoblastic MG-63 cells containing two estrogen receptor (ER) isotypes. Treatment with the ER antagonist ICI 182,780 abrogates the above actions of puerarin on osteoblast-derived cells. Using small interfering double-stranded RNAs technology, we further demonstrate that the effects of puerarin on OPG and RANKL expression are mediated by both ERα and ERβ but those on IL-6 production primarily by ERα. Moreover, we demonstrate that puerarin may promote activation of the classic estrogen response element (ERE) pathway through increasing ERα, ERβ and steroid hormone receptor coactivator (SRC)-1 expression. Therefore, puerarin will be a promising agent that prevents or retards osteoporosis.  相似文献   

6.
Effects of different magnitudes of mechanical strain on Osteoblasts in vitro   总被引:11,自引:0,他引:11  
In addition to systemic and local factors, mechanical strain plays a crucial role in bone remodeling during growth, development, and fracture healing, and especially in orthodontic tooth movement. Although many papers have been published on the effects of mechanical stress on osteoblasts or osteoblastic cells, little is known about the effects of different magnitudes of mechanical strain on such cells. In the present study, we investigated how different magnitudes of cyclic tensile strain affected osteoblasts. MC3T3-E1 osteoblastic cells were subjected to 0%, 6%, 12% or 18% elongation for 24h using a Flexercell Strain Unit, and then the mRNA and protein expressions of osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand (RANKL) were examined. The results showed that cyclic tensile strain induced a magnitude-dependent increase (0%, 6%, 12%, and 18%) in OPG synthesis and a concomitant decrease in RANKL mRNA expression and sRANKL release from the osteoblasts. Furthermore, the induction of OPG mRNA expression by stretching was inhibited by indomethacin or genistein, and the stretch-induced reduction of RANKL mRNA was inhibited by PD098059. These results indicate that different magnitudes of cyclic tensile strain influence the biological behavior of osteoblasts, which profoundly affects bone remodeling.  相似文献   

7.
8.
Increasingly natural products particularly flavonoids are being explored for their therapeutic potentials in reducing bone loss and maintaining bone health. This study has reviewed previous studies on the two better known flavonoids, genistein and icariin, their structures, functions, action mechanisms, relative potency, and potential application in regulating bone remodeling and preventing bone loss. Genistein, an isoflavone abundant in soy, has dual functions on bone cells, able to inhibit bone resorption activity of osteoclasts and stimulate osteogenic differentiation and maturation of bone marrow stromal progenitor cells (BMSCs) and osteoblasts. Genistein is an estrogen receptor (ER)‐selective binding phytoestrogen, with a greater affinity to ERβ. Genistein inhibits tyrosine kinases and inhibits DNA topoisomerases I and II, and may act as an antioxidant. Genistein enhances osteoblastic differentiation and maturation by activation of ER, p38MAPK‐Runx2, and NO/cGMP pathways, and it inhibits osteoclast formation and bone resorption through inducing osteoclastogenic inhibitor osteoprotegerin (OPG) and blocking NF‐κB signaling. Icariin, a prenylated flavonol glycoside isolated from Epimedium herb, stimulates osteogenic differentiation of BMSCs and inhibits bone resorption activity of osteoclasts. Icariin, whose metabolites include icariside I, icariside II, icaritin, and desmethylicaritin, has no estrogenic activity. However, icariin is more potent than genistein in promoting osteogenic differentiation and maturation of osteoblasts. The existence of a prenyl group on C‐8 of icariin molecular structure has been suggested to be the reason why icariin is more potent than genistein in osteogenic activity. Thus, the prenylflavonoids may represent a class of flavonoids with a higher osteogenic activity. J. Cell. Physiol. 228: 513–521, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Receptor activator of Nf-kappaB ligand (RANKL) and osteoprotegerin (OPG) have been implicated in bone metabolism. Specifically, the balance of these factors in conjunction with receptor activator of Nf-kappaB (RANK) is believed to be key in determining the rate of osteoclastogenesis and the net outcome of bone formation/resorption. While it is well accepted that mechanical loading in vivo affects bone formation/resorption and that alterations in the responsiveness of bone cells to mechanical loading have been implicated in metabolic bone diseases, the effect of in vitro mechanical loading on osteoblastic production of OPG and RANKL has not been extensively studied. Thus, in the current study, we developed an in vitro model to load human osteoblasts and studied levels of OPG, RANKL, PGE(2) and macrophage colony stimulating factor (M-CSF). We hypothesized that stimulating osteoblastic cells would increase the release of soluble OPG relative to RANKL favoring a bone-forming (and resorption-inhibiting) event. To accomplish this, we developed a small-scale loading machine that imparts via bending, well-defined substrate deformation to bone cells cultured on artificial substrates. Following 2h of loading and a 1h incubation period, media was collected and levels of soluble OPG, RANKL, PGE(2) and M-CSF were quantified using ELISA and western blotting. We found that mechanical loading significantly increased soluble OPG levels relative to RANKL at this 3h time point. Levels of soluble and cellular RANKL detected were not significantly affected by mechanical stimulation. The relative shift in abundance of OPG over RANKL associated with applied mechanical stimulation suggests the soluble OPG:RANKL ratio may be important in load-induced coupling mechanisms of bone cells.  相似文献   

10.
Osteoporosis and vasculopathy are common after organ transplantation and have been largely attributed to the use of immunosuppressants. Osteoprotegerin (OPG) is produced by osteoblastic and arterial cells, and inhibits osteoclast functions by neutralizing receptor activator of NF-kappaB ligand (RANKL). Because OPG-deficient mice develop osteoporosis and arterial calcification, we assessed the effects of immunosuppressants on OPG and RANKL expression by human osteoblastic and coronary artery smooth muscle cells (CASMC). Cyclosporine A, rapamycin, and FK-506 decreased OPG mRNA and protein levels in undifferentiated marrow stromal cells (by 63, 44, and 68%, respectively, P < 0.001). All three immunosuppressants increased RANKL mRNA levels in these cells by 60 to 210%. In contrast to these effects on marrow stromal cells, rapamycin, which may be relatively bone-sparing, increased OPG mRNA and protein production (by 120%, P < 0.001) in mature osteoblastic cells. Cyclosporine A also decreased OPG mRNA and protein production (by 52%, P < 0.001) of CASMC. In conclusion, immunosuppressants decrease OPG mRNA and protein production and increase RANKL gene expression by marrow stromal cells, and cyclosporine suppresses OPG production in CASMC. These studies thus provide a potential mechanism for immunosuppressant-induced bone loss, and the propensity of cyclosporine A to cause vascular disease.  相似文献   

11.
《Phytomedicine》2014,21(12):1498-1503
Phytoestrogen-rich Pueraria mirifica (PM) tuberous extract is a promising candidate for the development of anti-osteoporosis drugs for postmenopausal women, but its action has never been validated in humans or in non-human primates, which are more closely related to humans than rodents. In vitro study of non-human primate osteoblasts is thus fundamental to prepare for in vivo studies of phytoestrogen effects on primate bone. This study aimed to establish a culture system of baboon primary osteoblasts and to investigate the effects of PM extract and its phytoestrogens on these cells. Primary osteoblasts from adult baboon fibulae exhibited osteoblast characteristics in regard to proliferation, differentiation, mineralization, and estrogen receptor expression. They responded to 17β-estradiol by increased proliferation rate and mRNA levels of alkaline phosphatase (ALP), type I collagen, and osteocalcin. After being exposed for 48 h to 100 μg/ml PM extract, 1000 nM genistein, or 1000 nM puerarin, primary baboon osteoblasts markedly increased the rate of proliferation and mRNA levels of ALP and type I collagen without changes in Runx2, osterix, or osteocalcin expression. PM extract, genistein, and puerarin also decreased the RANKL/OPG ratio, suggesting that they could decrease osteoclast-mediated bone resorption. However, neither PM extract nor its phytoestrogens altered calcium deposition in osteoblast culture. In conclusion, we have established baboon primary osteoblast culture, which is a new tool for bone research and drug discovery. Furthermore, the present results provide substantial support for the potential of PM extract and its phytoestrogens to be developed as therapeutic agents against bone fragility.  相似文献   

12.
Anti-diabetic drug metformin has been shown to enhance osteoblasts differentiation and inhibit osteoclast differentiation in vitro and prevent bone loss in ovariectomized (OVX) rats. But the mechanisms through which metformin regulates osteoclastogensis are not known. Osteoprotegerin (OPG) and receptor activator of nuclear factor κB ligand (RANKL) are cytokines predominantly secreted by osteoblasts and play critical roles in the differentiation and function of osteoclasts. In this study, we demonstrated that metformin dose-dependently stimulated OPG and reduced RANKL mRNA and protein expression in mouse calvarial osteoblasts and osteoblastic cell line MC3T3-E1. Inhibition of AMP-activated protein kinase (AMPK) and CaM kinase kinase (CaMKK), two targets of metformin, suppressed endogenous and metformin-induced OPG secretion in osteoblasts. Moreover, supernatant of osteoblasts treated with metformin reduced formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in Raw264.7 cells. Most importantly, metformin significantly increased total body bone mineral density, prevented bone loss and decreased TRAP-positive cells in OVX rats proximal tibiae, accompanied with an increase of OPG and decrease of RANKL expression. These in vivo and in vitro studies suggest that metformin reduces RANKL and stimulates OPG expression in osteoblasts, further inhibits osteoclast differentiation and prevents bone loss in OVX rats.  相似文献   

13.
We studied estrogen effects on osteoclastic differentiation using RAW264.7, a murine monocytic cell line. Differentiation, in response to RANKL and colony-stimulating factor 1, was evaluated while varying estrogen receptor (ER) stimulation by estradiol or nonsteroidal ER agonists was performed. The RAW264.7 cells were found to express ERalpha but not ERbeta. In contrast to RANKL, which decreased ERalpha expression and induced osteoclast differentiation, 10 nm estradiol, 3 microm genistein, or 3 microm daidzein all increased ERalpha expression, stimulated cell proliferation, and decreased multinucleation, with the effects of estrogen > or = daidzein > genistein. However, no estrogen agonist reduced RANKL stimulation of osteoclast differentiation markers or its down-regulation of ERalpha expression by more than approximately 50%. Genistein is also an Src kinase antagonist in vitro, but it did not decrease Src phosphorylation in RAW264.7 cells relative to other estrogen agonists. However, both phytoestrogens and estrogen inhibited RANKL-induced IkappaB degradation and NF-kappaB nuclear localization with the same relative potency as seen in proliferation and differentiation assays. This study demonstrates, for the first time, the direct effects of estrogen on osteoclast precursor differentiation and shows that, in addition to effecting osteoblasts, estrogen may protect bone by reducing osteoclast production. Genistein, which activates ERs selectively, inhibited osteoclastogenesis less effectively than the nonselective phytoestrogen daidzein, which effectively reproduced effects of estrogen.  相似文献   

14.
The osteoprotegerin (OPG)/receptor activator of nuclear factor-B ligand (RANKL)/receptor activator of nuclear factor-B (RANK) system was evaluated as a potential target of CGRP anabolic activity on bone. Primary cultures of human osteoblast-like cells (hOB) express calcitonin receptor-like receptor (CLR) and receptor activity modifying protein 1, and, because CGRP stimulates cAMP (one of the modulators of OPG production in osteoblasts), it was investigated whether it affects OPG secretion and expression in hOB. CGRP treatment of hOB (10–11 M–10–7 M) dose-dependently inhibited OPG secretion with an EC50 of 1.08 x 10–10 M, and also decreased its expression. This action was blocked by the antagonist CGRP8–37. Forskolin, a stimulator of cAMP production, and dibutyryl cAMP also reduced the production of OPG. CGRP (10–8 M) enhanced protein kinase A (PKA) activity in hOB, and hOB exposure to the PKA inhibitor, H89 (2 x 10–6 M), abolished the inhibitory effect of CGRP on OPG secretion. Conditioned media from CGRP-treated hOB increased the number of multinucleated tartrate-resistant acid phosphatase-positive cells and the secretion of cathepsin K in human peripheral blood mononuclear cells compared with the conditioned media of untreated hOB. These results show that the cAMP/PKA pathway is involved in the CGRP inhibition of OPG mRNA and protein secretion in hOB and that this effect favors osteoclastogenesis. CGRP could thus modulate the balance between osteoblast and osteoclast activity, participating in the fine tuning of all of the bone remodeling phases necessary for the subsequent anabolic effect. receptor-activity-modifying proteins; protein kinase A; osteoclast; cathepsin K  相似文献   

15.
Receptor activator of nuclear factor-kB ligand (RANKL), a well-known membrane-bound molecule expressed on osteoblasts and bone marrow stromal cells, is believed to induce osteoclast differentiation and activation by binding to the receptor activator of nuclear factor-kB (RANK), which is expressed on the surface of osteoclast lineage cells. This induction is inhibited by osteoprotegerin (OPG) that is secreted by osteoblast lineage and acts as a decoy receptor of RANKL. Currently the essential role of the OPG/RANKL/RANK system in the process of osteoclast maturation, as well as activation, has been well established, and the majority of bone resorption regulators control osteoclast formation and activation through their effects on this system and especially on the relative expression levels of RANKL and OPG [1].  相似文献   

16.
The osteogenic growth peptide (OGP) is a naturally occurring tetradecapeptide that has attracted considerable clinical interest as a bone anabolic agent and hematopoietic stimulator. In vivo studies on animals have demonstrated that the synthetic peptide OGP (10-14), reproducing the OGP C-terminal active portion [H-Tyr-Gly-Phe-Gly-Gly-OH] increases bone formation, trabecular bone density and fracture healing. In vitro studies performed on cellular systems based on osteoblastic-like cell lines or mouse stromal cells, have demonstrated that OGP (10-14) increases osteoblast proliferation, alkaline phosphatase (ALKP) activity and matrix synthesis and mineralization. In view of a potential application of OGP (10-14) in clinical therapy, we have tested different concentrations of OGP (10-14) on primary human osteoblast (hOB) cultures. We have observed significant increases of hOB proliferation (+35%), ALKP activity (+60%), osteocalcin secretion (+50%), and mineralized nodules formation (+49%). Our experimental model based on mature hOBs was used to investigate if OGP (10-14) could prevent the effects on bone loss induced by sustained glucocorticoid (GC) treatments. A strong decrease in bone formation has been attributed to the effects of GCs on osteoblastogenesis and osteocyte apoptosis, while an increase in bone resorption was due to a transient osteoblastic stimulation, mediated by the OPG/RANKL/RANK system, of osteoclasts recruitment and activation. Moreover, GCs act on hOBs decreasing the release of osteoprotegerin (OPG) a regulator of the RANKL/RANK interaction. Here, we provide evidences that OGP (10-14) inhibits hOB apoptosis induced by an excess of dexamethasone (-48% of apoptotic cells). Furthermore, we show that OGP (10-14) can increase OPG secretion (+20%) and can restore the altered expression of OPG induced by GCs to physiological levels. Our results support the employment of OGP (10-14) in clinical trials addressed to the treatment of different bone remodeling alterations including the GC-induced osteoporosis.  相似文献   

17.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

18.
The interaction between receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG) plays a dominant role in osteoclastogenesis. As both proteins are produced by osteoblast lineage cells, they are considered to represent a key link between bone formation and resorption. In this study, we investigated the expression of RANKL and OPG during bone remodeling in vivo to determine the relationship between osteoclastogenic stimulation and osteoblastic differentiation.Total RNA was prepared from rat femurs after marrow ablation on days 0, 3, 6, and 9. The temporal activation patterns of osteoblast-related genes (procollagen α1 (I), alkaline phosphatase, osteopontin, and osteocalcin) were examined by Northern blot analysis. An appreciable increase in the expression of these osteoblast markers was observed on day 3. The peak increase in gene expression was observed on day 6 followed by a slight reduction by day 9. Real-time PCR analysis showed that the OPG mRNA expression was markedly upregulated on day 6 and slightly decreased on day 9. In contrast, RANKL mRNA expression was increased by more than 20-fold on day 9. The RANKL/OPG ratio, an index of osteoclastogenic stimulation, peaked on day 9. Histological analysis showed that RANKL and OPG immunoreactivity were predominantly associated with bone marrow cells. The expression of bone formation markers was activated in the bone formation phase, followed by the stimulation of RANKL/OPG expression in the bone resorption phase, which confirmed that these molecules are key factors linking bone formation to resorption during bone remodeling.  相似文献   

19.
The hypothesis tested in this in vitro study was that the expression and production of dietary isoflavone-mediated osteoclastogenesis-regulatory cytokines, such as interleukin-6 (IL-6) and osteoprotegerin (OPG), are related to the different levels of estrogen receptors expressed in two hFOB osteoblastic cell lines. OPG mRNA expression was significantly increased in both hFOB1.19 and hFOB/ER9 cells treated with 17 beta-estradiol, genistein, or daidzein at 10(-8)M in comparison to vehicle (control) (P<0.05). In both cell lines, the release of IL-6 was suppressed, while OPG production was enhanced by isoflavone treatments (P<0.05). The increased expression of OPG and decreased IL-6 production by isoflavones were dose-dependent. Responses to isoflavones were much stronger in hFOB/ER9 cells, which express the estrogen receptor 20 times higher than those in hFOB1.19 cells. After adding the ER binding blocker, ICI-182,780, the effects of isoflavones on OPG and IL-6 production disappeared. In summary, the inhibition by dietary isoflavones of IL-6 production and the stimulation of OPG appear to be mediated, at least in part, via a genomic pathway operating through estrogen receptors and gene expression mechanisms.  相似文献   

20.
The aim of the work was to investigate the differential regulation by dehydroepiandrosterone (DHEA) of the osteoblastic production via the estrogen receptor beta (ER β)-mediated signaling pathway. Having developed hMG63-ER β cells and hMG63-shER β cells, we analyzed the regulation by DHEA of human osteoblastic viability, the receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), and the differential expression of ER β, ER α, or p-ERK1/2 (extracellular signal-regulated kinase) in hMG63, hMG63-shER β, and hMG63-ER β cells pretreated with or without U0126, flutamide, and ICI 182780, followed by DHEA culture. When the level of ER β was high, DHEA (10 - 7 mol/l) could effectively amplify the proliferation and inhibit the etoposide-induced apoptosis of hMG63 cells (p<0.01 and p<0.05, respectively), which was blocked by U0126. When the expression of ER β was silenced, DHEA could not significantly improve the viability of hMG63. In the presence of ER β, DHEA activated the pERK1/2-MAPK signaling pathway but not p38 and JNK. Besides, the regulation of p-ERK1/2 upon DHEA treatment was mainly modulated by ER β instead of androgen receptor and ER α. The secretion of OPG was declined following the silence of ER β (p<0.05). RANKL and ER α, however, were unaffected by culture with or without DHEA and U0126, regardless of the ER β level. DHEA seems to act selectively on osteoblasts via the dominant ER β receptor, which mediates amplified cell viability through the MAPK signaling pathway involving pERK1/2 and upregulates the production of OPG rather than RANKL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号