共查询到20条相似文献,搜索用时 8 毫秒
1.
A sucrose-inducible alpha-glucosidase activity that hydrolyzes sucrose in Candida albicans has been demonstrated previously. The enzyme is assayable in whole cells and was inhibited by both sucrose and maltose. A C. albicans gene (CASUC1) that affects sucrose utilization and alpha-glucosidase activity was cloned by expression in a Saccharomyces cerevisiae suc2 mutant (2102) devoid of invertase genes. CASUC1 enabled the S. cerevisiae mutant to utilize both sucrose and maltose. DNA sequence analysis revealed that CASUC1 encodes a putative zinc finger-containing protein with 28% identity to a maltose-regulatory gene (MAL63) of S. cerevisiae. The gene products of CASUC1 and MAL63 are approximately the same size (501 and 470 amino acids, respectively), and each contains a single zinc finger located at the N terminus. The zinc fingers of CASUC1 and MAL63 comprise six conserved cysteines (C6 zinc finger) and are of the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaavariable-Cys-Xaa2-Cys-+ ++Xaa6-Cys (where Xaan indicates a stretch of the indicated number of any amino acids). Both contain five amino acids in the variable region. CASUC1 also complemented the maltose utilization defect of an S. cerevisiae mutant (TCY-137) containing a defined mutation in a maltose-regulatory gene. The sucrose utilization defect of type II Candida stellatoidea, a sucrase-negative mutant of C. albicans, was corrected by CASUC1. Determinations of alpha-glucosidase activity in whole cells revealed that activity was restored in transformants cultivated on either sucrose or maltose. To our knowledge, this is the first zinc finger-encoding gene, as well as the first putative regulatory gene, to be identified in C. albicans. 相似文献
2.
We have cloned and sequenced the gene (ARF) encoding the ADP-ribosylation factor (ARF) of Candida albicans. The gene contains an open reading frame of 537 nucleotides (nt) that codes for a protein with an Mr of 20,259. The C. albicans ARF gene is 67-70% identical at the nt level to other ARF sequences including those of humans; the deduced amino acid sequence of C. albicans ARF shows a 78-83% identity and 89-92% similarity to the other ARFs. Southern analysis of C. albicans genomic DNA suggested the presence of a second ARF gene. The presence of multiple ARF genes is a consistent finding among the other organisms previously shown to have ARFs. 相似文献
3.
4.
Cloning and characterization of CSP37, a novel gene encoding a putative membrane protein of Candida albicans. 下载免费PDF全文
M Sentandreu A Nieto A Iborra M V Elorza J Ponton W A Fonzi R Sentandreu 《Journal of bacteriology》1997,179(15):4654-4663
In the course of an analysis of the functions and assembly of the cell wall of Candida albicans, we have cloned and characterized a gene, which we designated CSP37 (cell surface protein), encoding a 37-kDa polypeptide which is a membrane-associated protein. The gene was isolated by immunological screening of a DNA library constructed from mycelial cells with a polyclonal serum raised against cell walls of this morphology. Analysis of the nucleotide sequence of a corresponding genomic DNA fragment revealed a single open reading frame which encodes a predicted protein of 321 amino acids with no significant homology to others in the databases. Disruption of the CSP37 gene by the method described by Fonzi and Irwin (Genetics 134:717-728, 1993) eliminated expression of the Csp37 protein. The mutant strains showed no apparent defect in cell viability, growth, or cell wall assembly but displayed attenuated virulence in systemic infections induced in mice and reduced the ability to adhere to polystyrene. 相似文献
5.
Verónica Veses Manuel Casanova Amelia Murgui Neil A.R. Gow & José P. Martínez 《FEMS yeast research》2009,9(2):293-300
The human fungal pathogen Candida albicans undergoes reversible morphogenetic transitions between yeast, hyphal and pseudohyphal forms. The fungal vacuole actively participates in differentiation processes and plays a key role supporting hyphal growth. The ABG1 gene of C. albicans encodes an essential protein located in the vacuolar membranes of both yeast and hyphae. Using fluorescence microscopy of a green fluorescent protein-tagged version of Abg1p, a fraction of the protein was detected in hyphal tips, not associated with vacuolar membranes. Live cell imaging of emerging germ tubes showed that Abg1p migrated to the polarized growth site and colocalized with endocytic vesicles. Phenotypic analysis of a methionine-regulated conditional mutant confirmed that Abg1p is involved in endocytosis. 相似文献
6.
A full-length cDNA clone encoding sucrose synthase (SS; EC 2.4.1.13) was isolated from muskmelon (Cucumis melo L.) by RT-PCR and RACE. The clone, designated as CmSS1, contains 2,585 nucleotides with an open reading frame of 2,412 nucleotides. The deduced 804 amino acid sequence showed high identities with other plant sucrose synthase. Real time PCR analysis indicated that CmSS1 expression differed among root, stem, leaf, flower and fruit tissues. The analysis during fruit development indicated that CmSS1 mRNA showed its maximum level at 5 days after pollination (DAP) and decreased gradually during fruit development until its minimum level in mature fruit. The sucrose content was very low in fruit before 20 DAP but increased dramatically between 20 and 30 DAP during fruit development. However, SS activities in both direction of sucrose synthesis and sucrose cleavage were very low and changed little during fruit development, suggesting that SS may play little role in determining sucrose accumulation during muskmelon fruit. 相似文献
7.
8.
9.
《Gene》1998,215(2):311-318
A genomic sequence encoding mitochondrial methionyl-tRNA synthetase (MetRS) was determined from a pathogenic fungi Candida albicans. The gene is distinct from that encoding the cytoplasmic MetRS. The encoded protein consists of 577 amino acids (aa) and contains the class I defining sequences in the N-terminal domain and the conserved anticodon-binding amino acid, Trp, in the C-terminal domain. This protein showed the highest similarity with the mitochondrial MetRSs of Saccharomyces cerevisiae and Shizosaccharomyces pombe. The mitochondrial MetRSs of these fungi were distinguished from their cytoplasmic forms. The protein lacks the zinc binding motif in the N-terminal domain and the C-terminal dimerization appendix that are present in MetRSs of several other species. Escherichia coli tRNAMet was a substrate for the encoded protein as determined by genetic complementation and in vitro aminoacylation reaction. This cross-species aminoacylation activity suggests the conservation of interaction mode between tRNAMet and MetRS. 相似文献
10.
Jia XM Ma ZP Jia Y Gao PH Zhang JD Wang Y Xu YG Wang L Cao YY Cao YB Zhang LX Jiang YY 《Biochemical and biophysical research communications》2008,373(4):631-636
Widespread and repeated use of azoles, particularly fluconazole, has led to the rapid development of azole resistance in Candida albicans. Overexpression of CDR1, CDR2, and CaMDR1 has been reported contributing to azole resistance in C. albicans. In this study, hyper-resistant C. albicans mutant, with the above three genes deleted, was obtained by exposure to fluconazole and fluphenezine for 28 passages. Thirty-five differentially expressed genes were identified in the hyper-resistant mutant by microarray analysis; among the 13 up-regulated genes, we successfully constructed the rta2 and ipf14030 null mutants in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1. Using spot dilution assay, we demonstrated that the disruption of RTA2 increased the susceptibility of C. albicans to azoles while the disruption of IPF14030 did not influence the sensitivity of C. albicans to azoles. Meanwhile, we found that ectopic overexpression of RTA2 in C. albicans strain with deletions of CDR1, CDR2 and CaMDR1 conferred resistance to azoles. RTA2 expression was found elevated in clinical azole-resistant isolates of C. albicans. In conclusion, our findings suggest that RTA2 is involved in the development of azole resistance in C. albicans. 相似文献
11.
Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity 总被引:3,自引:0,他引:3 下载免费PDF全文
The opportunistic pathogenic yeast Candida albicans exhibits growth phase-dependent changes in cell surface hydrophobicity, which has been correlated with adhesion to host tissues. Cell wall proteins that might contribute to the cell surface hydrophobicity phenotype were released by limited glucanase digestion. These proteins were initially characterized by their rates of retention during hydrophobic interaction chromatography--high-performance liquid chromatography and used as immunogens for monoclonal antibody production. The present work describes the cloning and functional analysis of a C. albicans gene encoding a 38-kDa protein recognized by the monoclonal antibody 6C5-H4CA. The 6C5-H4CA antigen was resolved by two-dimensional electrophoresis, and a partial protein sequence was determined by mass spectrometry analysis of tryptic fragments. The obtained peptides were used to identify the gene sequence from the unannotated C. albicans DNA database. The antibody epitope was provisionally mapped by peptide display panning, and a peptide sequence matching the epitope was identified in the gene sequence. The gene sequence encodes a novel open reading frame (ORF) of unknown function that is highly similar to several other C. albicans ORFs and to a single Saccharomyces cerevisiae ORF. Knockout of the gene resulted in a decrease in measurable cell surface hydrophobicity and in adhesion of C. albicans to fibronectin. The results suggest that the 38-kDa protein is a hydrophobic surface protein that meditates binding to host target proteins. 相似文献
12.
13.
14.
15.
16.
[目的]白念珠菌CaFTH1是一种铁通透酶编码基因.为了研究CaFTH1对胞内铁代谢和液泡功能的影响,构建fth1△/△单基因缺失菌株和fth1△/△fet33△/△双基因缺失菌株.[方法]利用生物信息学软件对CaFTH1进行序列比对和分析;通过实时荧光定量PCR技术研究铁离子丰度对CaFTH1表达的影响;利用PCR介导的同源重组方法构建基因缺失菌株;利用原子吸收光谱方法测定基因缺失菌株胞内铁含量的变化,并对基因缺失菌株在缺铁条件和菌丝诱导条件下的生长状况进行研究;通过代谢转换实验,研究CaFTH1对细胞液泡功能的影响.[结果]序列比对结果表明白念珠菌CaFth1蛋白属于铁通透酶Ftr1超家族,与酿酒酵母液泡膜蛋白ScFth1具有最高的同源性.铁匮乏条件会诱导CaFTH1的表达,而富铁条件则会抑制其表达.白念珠菌CaFTH1的缺失会导致胞内铁含量的降低,fth1△/△突变菌株基础上CaFET33的缺失则会进一步降低胞内铁含量.在缺铁条件下,fth1△/△fet33△/△双基因缺失菌株在一定程度上表现出代谢转换能力的缺陷.另外,在某些固体菌丝诱导培养条件下,fth1△/△fet33△/△缺失菌株菌落表面形成褶皱能力显著增强;而在液体菌丝诱导条件下,则表现为增强的菌丝聚集能力.[结论]CaFTH1是一种低铁应答基因,在维持白念珠菌胞内铁离子稳态及液泡功能方面具有重要作用.CaFTH1和CaFET33基因的双缺失会对白念珠菌的菌落形态和菌丝聚集产生影响. 相似文献
17.
The Schizosaccharomyces pombe maltase structural gene (SPMAL1+) was amplified from genomic DNA of S. pombe by PCR. An open reading frame of 1740 bp, encoding a putative 579 amino-acid protein with a calculated molecular mass of 67.7 kDa was characterized in the genomic DNA insert of plasmid pQE30. The specific maltase activity in the induced transformants was 21 times higher than that in wild-type. However, the estimated molecular mass of the purified recombinant maltase was 44.3 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The optimal temperature and pH of the purified recombinant maltase were 40 °C and 6, respectively. The recombinant maltase was weakly activated by Mg2+, Ca2+, Na+, and Ba2+, but was strongly inhibited by Hg2+, Ag+ and Cu2+, EDTA, and PMSF. The purified maltase could actively hydrolyse ρ-nitrophenyl glucoside (PNPG), maltose, dextrin, and soluble starch. The results demonstrate that maltase from S. pombe was different from that from other yeasts, and might be usefully exploited in the future by the biotechnology industry or lead to the development of new molecular genetic tools. 相似文献
18.
Rapamycin (Rm) and FK506 are macrolide antifungal agents that exhibit potent immunosuppressive properties in higher eukaryotes which are mediated through interaction with specific receptor proteins (FKBPs or RBPs, for FK506- and Rm-binding proteins, respectively). These proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity in vitro which is inhibited by the binding of Rm and FK506. We previously isolated a gene encoding an RBP from Saccharomyces cerevisiae, and demonstrated that null mutations in this gene (called RBP1) result in a recessive Rm-resistant (RmR) phenotype. We now have cloned the Candida albicans RBP1 gene via complementation of the RmR phenotype in S. cerevisiae. The predicted C. albicans RBP exhibits 61%, 52% and 49% amino acid (aa) sequence identity with RBPs (FKBPs) from S. cerevisiae, Neurospora crassa and human cells (FKBP-12), respectively. Furthermore, several of the aa residues identified as being important for drug binding in human FKBP-12 are conserved within the C. albicans RBP. 相似文献
19.
Arroyo-Flores BL Calvo-Méndez C Flores-Carreón A López-Romero E 《Antonie van Leeuwenhoek》2004,85(3):199-207
Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes. 相似文献
20.
Howard F. Jenkinson Gillian P. Schep Maxwell G. Shepherd 《FEMS microbiology letters》1988,49(2):285-288
Abstract A variety of Saccharomyces cerevisiae genes e.g. HIS3, LEU2, TRP1, URA3 , are expressed in Escherichia coli and have been isolated by complementation of mutations in the corresponding E. coli genes [1]. The LEU2 gene was one of the first S. cerevisiae genes to be isolated in this way [2], and its isolation led to the development of transformation systems for S. cerevisiae [3,4]. The leuB gene in E. coli [5] and the LEU2 gene in S. cerevisiae [6] both code for 3-isopropylmalate dehydrogenase (3-IMDH; EC 1.1.1.85) which is essential for the biosynthesis of leucine in both organisms. This paper describes the cloning of a fragment of C. albicans DNA carrying the gene for 3-IMDH which will be useful in the development of transformation methods in C. albicans . 相似文献