首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using a combination of in situ mapping and DNA analysis with recombinant DNA probes specific for the Sxr region of the mouse Y chromosome, we show that both the gene(s) controlling primary sex determination and the expression of the male-specific antigen H-Y (Tdy and Hya respectively) are located on the minute short arm of the mouse Y chromosome. We demonstrate that the H-Y- variant of Sxr (Sxr') arose by a partial deletion within the Sxr region and propose an alternative model for the generation of the original Sxr region.  相似文献   

2.
Testicular development in a patient with deletion of the distal (fluorescent) segment of the Y chromosome is described. The presence of a normal dose of H-Y antigen was demonstrated by Goldberg's cytotoxicity test. It is concluded that the distal fluorescent segment of the Y chromosome is void of genes regulating H-Y antigen activity.  相似文献   

3.
H-Y antigen is a surface component associated with the heterogametic sex of various species and supposed to induce testicular differentiation. Genes controlling directly or not the expression of H-Y antigen and testicular differentiation have been localized on Y as well as on X chromosome and even autosomal chromosome. However the genetical localization of the H-Y structural gene remains unknown. We analysed the expression of H-Y antigen in three types of sexual dysgenesis (males bearing XX caryotype, testicular feminization syndrome and one case of hermaphroditism) to clarify the function and the genetics of this antigen.  相似文献   

4.
A case of a 46,XYp- phenotypic female provided an opportunity to evaluate both sexual and somatic determinants for the Y chromosome. The patient had multiple stigmata of Turner syndrome, but normal stature. Laparotomy revealed a normal uterus and tubes, with 1.5 cm undifferentiated gonads. Serological tests for H-Y antigen (ostensibly the product of Y-chromosomal testis-determining genes) indicated absence of the H-Y+ phenotype normally associated with the intact Y chromosome. We conclude that genes exist on the short arm of the human Y chromosome which both suppress some of the somatic stigmata of Turner syndrome and determine normal expression of H-Y antigen and testicular differentiation of the primitive gonad. Our data are consistent with the view that H-Y genes comprise a family of testis-determinants, and that loss of a critical moiety is inconsistent with normal development of the male gonad.  相似文献   

5.
Yukifumi Nagai  Susumu Ohno 《Cell》1977,10(4):729-732
The XO sex chromosome constitution has been found in both sexes of the mole-vole (Ellobius lutescens) belonging to the rodent family Microtinae. This enigmatic species has apparently been enduring a 50% zygotic lethality. The current serological study revealed the presence in XO males and the absence from XO females of H-Y (histocompatibility Y) antigen. In all the mammalian species studied thus far, the expression of H-Y antigen strictly coincided with the presence of testicular tissue and not necessarily with the presence of the Y chromosome. The testis-organizing function of the H-Y gene appears to have been confirmed.In the mole-vole, X linkage of the testis-organizing H-Y gene is favored over its autosomal inheritance. Only X linkage of the H-Y gene creates a compelling evolutionary need to change the female sex chromosome constitution from XX to XO, and to abandon the dosage compensation by an X inactivation mechanism, so that the nonproductive XH-YX zygote can be eliminated as an embryonic lethal. With regard to the electrophoretic mobilities of three X-linked marker enzymes, however, a genetic difference between the male-specific XH-Y and the female-specific X was not detected. This might reflect a relatively recent speciation.  相似文献   

6.
Summary Phenotypic features and functions known to depend on the presence of the Y chromosome or the H-Y antigen are discussed in relation to structural anomalies of the Y chromosome and other abnormalities of sexual and somatic development.Recent knowledge about molecular organization of constitutive heterochromatin in relation to the human Y is presented.An attempt is made at assigning different functions, genes and DNA sequence to different regions of the Y chromosome.  相似文献   

7.
The etiology of maleness in XX men   总被引:19,自引:0,他引:19  
Summary Information relating to the etiology of human XX males is reviewed. The lesser body height and smaller tooth size in comparison with control males and first-degree male relatives could imply that the patients never had any Y chromosome. Neither reports of occasional mitoses with a Y chromosome, nor of the occurrence of Y chromatin in Sertoli cells are convincing enough to support the idea that low-grade or circumscribed mosaicism is a common etiologic factor. Reports of an increase in length of one of the X chromosomes in XX males are few and some are conflicting. Nor is there any evidence to support the idea of loss of material. However, absence of visible cytogenetic alteration does not rule out the possibility of translocations, exchanges or deletions.A few familial cases are known. Mendelian gene mutations may account for a number of instances of XX males, similar genes being well known in several animal species. The existing geographical differences in the prevalence of human XX males could be explained by differences in gene frequency. But if gene mutation were a common cause of XX maleness there would be more familial cases.Any hypothesis explaining the etiology of XX males should take into account the following facts. There are at least 4 examples of XX males who have inherited the Xg allele carried by their fathers, and at least 9 of such males who have not. The frequency of the Xg phenotype among XX males is far closer to that of males than to that of females, while the absence of any color-blind XX males (among 40 tested) resembles the distribution in females. Furthermore, H-Y antigen is present in XX males, often at a strength intermediate between that in normal males and females. Finally, in a pedigree comprising three independently ascertained XX males, the mothers of all three are H-Y antigen-positive, and the pattern of inheritance of the antigen in two of them precludes X-chromosomal transmission.Many of the data are consistent with the hypothesis that XX males arise through interchange of the testic-determining gene on the Y chromosome and a portion of the X chromosome containing the Xg gene. However, actual evidence in favor of this hypothesis is still lacking, and the H-Y antigen data are not easy to explain. In contrast, if recent hypotheses on the mechanisms controlling the expression of H-Y antigen are confirmed, a gene exerting negative control on testis determination would be located near the end of of the short arm of the X chromosome. This putative gene is believed not to be inactivated in normal females, for at least two other genes located in the same region, i.e. Xg and steroid sulfatase, are not. Deletion or inactivation of these loci would explain how XX males arise and would be consistent with most, but not all, the facts.There is yet no single hypothesis that by itself can explain all the facts accumulated about XX males. While mosaicism appears very unlikely in most cases, Mendelian gene mutation, translocation, X-Y interchange, a minute deletion or preferential inactivation of an X chromosome, or part thereof, remain possible. The etiology of XX maleness may well be heterogeneous.  相似文献   

8.
The basic plan of gonadal development in both sexes is female unless testes are induced by factor(s) of the Y chromosome, known as testis determining factor(s) (TDF). It is not clearly established whether the Y chromosome control is autonomous or under the control of a gene on the X chromosome or autosomes. A gene for the H-Y antigen (Histocompatibility-Y antigen) has been postulated to be the factor determining testicular differentiation. Recent studies have demonstrated that the gene for testis determination and the H-Y determinant are two separate entities. Although earlier cytogenetic observations localized TDF on the pericentric region of the short arm of the Y chromosome, subsequent findings by high-resolution chromosome banding and molecular analysis localise TDF to the distal part of the short arm of the Y chromosome, adjacent to the pseudoautosomal region. A candidate for TDF, the ZFY, was localised within the 140 kb interval where the position of TDF was defined, and considered as the TDF gene. However, a smaller gene sequence of 35 kb, the SRY, situated outside the 140 kb ZFY region, has recently been isolated and proved to be the only and the smallest part of the Y chromosome necessary for male sex determination.  相似文献   

9.
Genetic aspects of H-Y antigen   总被引:3,自引:0,他引:3  
Summary While it remains to be clarified what detection of H-Y antigen by current methods means, the existence of a factor governing testicular differentiation of the indifferent gonadal anlage seems to be well established. There are various kinds of evidence that H-Y antigen as a biologically meaningful factor has a complex genetical basis. There is the contribution of the Y chromosome which, independent of the number of other chromosomes, especially of X chromosomes, leads to a male phenotype. The X chromosome must be involved also because structural aberrations of its distal short arm influence the expression of the H-Y structural gene. Due to examples of autosomal inheritance of various forms of sex reversal, an autosomal gene is assumed to be involved as well. Arguments are presented favoring the assumption that the structural H-Y gene is autosomal, while genes on the X and Y chromosomes have a controlling function.This genetic control mechanism for H-Y antigen seems to have evolved secondary to placentation in mammals. In non-mammalian vertebrates, H-Y antigen is controlled by other factors, e.g. steroid hormones. While the functional role of H-Y antigen in directing differentiation of the heterogametic gonad appears to have been preserved during evolution, the mechanism of its control has changed. This latter mechanism is only poorly understood.  相似文献   

10.
We combine data from published marker genotyping of three sets of S. latifolia Y chromosome deletion mutants with changed sex phenotypes and add genotypes for several new genic markers to refine the deletion map of the Y chromosome and compare it with the X chromosome genetic map. We conclude that the Y chromosome of this species has been derived through multiple rearrangements of the ancestral gene arrangement and that none of the rearrangements so far detected was involved in stopping X-Y recombination. Different Y genotypes may also differ in their gene content and possibly arrangements, suggesting that mapping the Y-linked sex-determining genes will be difficult, even if many further genic markers are obtained. Even in determining the map of Y chromosome markers to discover all the rearrangements, physical mapping by FISH or other experiments will be essential. Future deletion mapping work should ensure that markers are studied in the parents of deletion mutants and should probably include additional deletions that were not ascertained by causing mutant sex phenotypes.  相似文献   

11.
Three genetic functions have been mapped to the minute Sxr (sex-reversed) region of the mouse Y chromosome. These are Tdy, the primary testis determinant; Hya, the locus (either structural or regulatory) controlling the expression of the male-specific minor histocompatibility antigen H-Y; and Spy, a spermatogenic gene. Hya and Spy map to DNA deleted from the Sxr region in the deletion variant Sxrb (the delta Sxrb DNA). With the object of cloning Hya and Spy, we initiated chromosome walking in the delta Sxrb DNA. From three independent loci--Sx1, Zf2, and T5--we have isolated approximately 270 kb of delta Sxrb DNA lying in three contigs of 145, 60, and 65 kb, respectively. Within 17 kb of the 3' end of the Zfy-2 gene, lowcopy repeat elements were found in a region that extends for approximately 35 kb. Probes isolated from this region detect multiple Sxr loci, some of which map to the delta Sxrb DNA present in the T5 contig DNA. Three of these multicopy probes detect delta Sxrb loci not represented in our three contigs, which means that six distinct delta Sxrb loci have now been identified. Here we present a preliminary model of the molecular structure of the DNA in this unique region.  相似文献   

12.
Studies designed to answer the question whether or not H-Y antigen is preferentially expressed on Y chromosome bearing sperm have resulted in conflicting results. This is probably due to the absence of reliable methods for estimating the percentage of X and Y chromosome bearing sperm in fractions, enriched or depleted for H-Y antigen positive sperm. In recent years a reliable method for separating X and Y chromosome bearing sperm has been published. With this method, separation is achieved by using a flow cytometer/cell sorter, which detects differences in DNA content. This technique provided the first opportunity for testing anti-H-Y antibody binding to fractions enriched for X and Y chromosme bearing sperm, directly. A total of 7 anti-H-Y monoclonal antibodies were tested using sorted porcine sperm and in one experiment also sorted bovine sperm. All monoclonal antibodies bound only a fraction of the sperm (20 to 50%). However, no difference in binding to the X and Y sperm enriched fractions was found. Therefore, the present experiments do not yield evidence that H-Y antigen is preferentially expressed in Y chromosome bearing sperm. © 1993 Wiley-Liss, Inc.  相似文献   

13.
Deletion of the entire AZFc locus on the human Y chromosome leads to male infertility. The functional roles of the individual gene families mapped to AZFc are, however, still poorly understood, since the analysis of the region is complicated by its repeated structure. We have therefore used single-nucleotide variants (SNVs) across approximately 3 Mb of the AZFc sequence to identify 17 AZFc haplotypes and have examined them for deletion of individual AZFc gene copies. We found five individuals who lacked SNVs from a large segment of DNA containing the DAZ3/DAZ4 and BPY2.2/BPY2.3 gene doublets in distal AZFc. Southern blot analyses showed that the lack of these SNVs was due to deletion of the underlying DNA segment. Typing 118 binary Y markers showed that all five individuals belonged to Y haplogroup N, and 15 of 15 independently ascertained men in haplogroup N carried a similar deletion. Haplogroup N is known to be common and widespread in Europe and Asia, and there is no indication of reduced fertility in men with this Y chromosome. We therefore conclude that a common variant of the human Y chromosome lacks the DAZ3/DAZ4 and BPY2.2/BPY2.3 doublets in distal AZFc and thus that these genes cannot be required for male fertility; the gene content of the AZFc locus is likely to be genetically redundant. Furthermore, the observed deletions cannot be derived from the GenBank reference sequence by a single recombination event; an origin by homologous recombination from such a sequence organization must be preceded by an inversion event. These data confirm the expectation that the human Y chromosome sequence and gene complement may differ substantially between individuals and more variations are to be expected in different Y chromosomal haplogroups.  相似文献   

14.
Summary The existence of a strict correlation between presence of testicular tissue and presence of H-Y antigen in mammals and man leads to the conclusion that H-Y antigen is an essential differentiation factor in testicular morphogenesis. Presence of low titers of this differentiation antigen even in fertile females indicates that its morphogenetic effect depends on a threshold. Here, studies on H-Y antigen in female individuals with various deletions of the X-chromosome are reported. It turns out that deletion of Xp results in the synthesis of reduced amounts of H-Y antigen, while deletion of Xq does not. In a fertile female with only Xp223 deleted due to an X/Y translocation, including the distal Yq, presence of a reduced H-Y titer allows for the tentative assignment of a controlling gene repressing the H-Y structural gene. From the cases studied, it follows that the H-Y structural gene is autosomal and under the control of X- and Y-linked genes. The conception emerges that interaction between X- and Y-linked genes or their products results in variation of the H-Y antigen titer. The fate of the indifferent gonadal anlage to differentiate into the male or the female direction will depend on the titer of H-Y antigen reached by the action or interaction of the controlling genes involved.Supported by the Deutsche Forschungsgemeinschaft (SFB 46)  相似文献   

15.
Summary H-Y antigen was determined in seven XO-, nine XO/XX patients, in one patient with i(Xq), and in one patient with a mosaic XO/XYqh-. It turned out that all patients are H-Y antigen positive, confirming the results of earlier investigations of H-Y antigen in patients with Turner's syndrome. The results in XO/XX mosaics clearly demonstrate that the XO-cell is H-Y antigen positive and support the view of a regulatory gene for H-Y antigen gene expression which is located on the X chromosome.  相似文献   

16.
Summary We describe clinical features and laboratory findings in a physically and mentally retarded male with under-developed testes, a seemingly monocentric isochromosome of Yq but the presence of a Yp-specific DNA sequence at a single dose of unknown genomic localisation, and the presence of H-Y antigen at normal male titer. Our data contribute to the fine mapping of the human Y chromosome by correlating phenotypic features with results from karyotypic, immunologic, and molecular hybridisation analyses.  相似文献   

17.
本实验在种公牛站精液生产过程中应用生殖免疫技术方法 ,制作性别化冷冻精液 ,结合人工授精技术进行奶牛性别控制的研究实验。根据精子DNA含量存在的差异 ,利用荧光染料与精子DNA结合 ,通过蔗糖溶液密度梯度离心法 ,分离出和鉴别出牛精液中的X与Y精子作为抗原。经与小鼠免疫后 ,制成H Y抗血清IgG ,再经酶联免疫吸附法 (ELISA)析测表明 ,获得了具有一定纯度和工作效价的阳性抗Y精子的H Y抗血清IgG ,H Y抗血清对性别化精液冷冻前 ,解冻后活力的影响与对照组无显著差异。配种受胎试验结果表明 ,性别化冷冻精液在获得与正常冷冻精液相似的情期受胎率的同时 ,对后代性别比率有显著影响 ,奶牛产母犊率可达 60 7% ,比自然产母犊性比率理论值提高 1 0 7个百分点 (P <0 0 5 )。  相似文献   

18.
19.
Summary H-Y antigen was studied serologically on blood cells and cultured fibroblasts of patients with numerical aberrations of the sex chromosomes. As compared with normal males, patients with the karyotypes 48,XXXY and 49,XXXXY have reduced H-Y antigen titrs; a tendency toward reduced titers can also be detected in the 47,XXY Klinefelter syndrome. The existence of an intermediary titer was further substantiated by a quantitative absorption test applied to cells with the 49,XXXXY karyotype. It appears that in the presence of one Y chromosome, the H-Y antigen titer decreases with an increasing number of X chromosomes. In contrast, the H-Y antigen titer is increased if, at a given number of X chromosomes, the number of Y chromosomes is increased, as in the 47,XYY male. Consequently, patients with 48,XXYY chromosomes are in the male control range. The findings are interpreted under the hypothesis of a controlling or modifying influence of the sex chromosomes on the titer of H-Y antigen.  相似文献   

20.
Zluvova J  Janousek B  Negrutiu I  Vyskot B 《Genetics》2005,170(3):1431-1434
Here we compare gene orders on the Silene latifolia sex chromosomes. On the basis of the deletion mapping results (11 markers and 23 independent Y chromosome deletion lines used), we conclude that a part of the Y chromosome (covering a region corresponding to at least 23.9 cM on the X chromosome) has been inverted. The gradient in silent-site divergence suggests that this inversion took place after the recombination arrest in this region. Because recombination arrest events followed by Y chromosome rearrangements also have been found in the human Y chromosome, this process seems to be a general evolutionary pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号