共查询到20条相似文献,搜索用时 19 毫秒
1.
Abstract. We examined the role of playa lakes in promoting regional heterogeneity on the southern High Plains. The goals of this paper were to: (1) describe vegetation types and zonation patterns within playas, (2) evaluate patterns of species distribution and abundance within and among playas, and (3) assess patterns of heterogeneity within and among playas on a portion of the southern High Plains. Perennial grasses were the most abundant species in playa vegetation. Playa vegetation exhibited distinct and repeatable vegetation zones at the majority of sites, but the number of distinct zones varied from site to site. Agropyron smithii, Buchloë dactyloides, and Panicum obtusum were the most important species of playa interior zones, and Bouteloua gracilis, Buchloë dactyloides, and Schedonnardus paniculatus were important upland species outside of playas. Species distribution and abundance were positively correlated at 38 of 40 sites. The distributions of species occurrences among sites were unimodal both locally and regionally. The degree of heterogeneity varied from playa to playa. Local heterogeneity within playas was found to increase regional heterogeneity; therefore, playas increase both local and regional heterogeneity of vegetation. Long-term monitoring will be necessary to understand the spatial and temporal response of vegetation within and among playas to stochastic climatic factors on the southern High Plains of North America. 相似文献
2.
ABSTRACT. 1. Patterns of daily and seasonal activity for seven species of tenebrionid beetles, genus Eleodes , were investigated in the shortgrass prairie of northeastern Colorado. The relationship between time of activity, body temperatures, and rates of water loss of the beetles was examined in the field and in laboratory experiments.
2. Common species were active from April until the end of October; however, asynchronous peaks of abundance occurred.
3. Beetles were diurnally active with peaks of daily activity occurring 2–4 h after sunrise and before sunset. Less than a 2 h shift in mean time of activity occurred between seasons.
4. Within species, body temperatures measured in the field closely corresponded to temperatures selected in an experimental thermal gradient; hence, species seemed to prefer particular body temperatures and were most active during times when those temperatures could be achieved. Body temperatures measured in the field approximated ambient temperatures measured in the vicinity of the beetle.
5. Significant differences among several species were found for times of daily activity and corresponding body temperatures.
6. Ability to resist water loss by evaporation was not correlated with daily or seasonal activity patterns. 相似文献
2. Common species were active from April until the end of October; however, asynchronous peaks of abundance occurred.
3. Beetles were diurnally active with peaks of daily activity occurring 2–4 h after sunrise and before sunset. Less than a 2 h shift in mean time of activity occurred between seasons.
4. Within species, body temperatures measured in the field closely corresponded to temperatures selected in an experimental thermal gradient; hence, species seemed to prefer particular body temperatures and were most active during times when those temperatures could be achieved. Body temperatures measured in the field approximated ambient temperatures measured in the vicinity of the beetle.
5. Significant differences among several species were found for times of daily activity and corresponding body temperatures.
6. Ability to resist water loss by evaporation was not correlated with daily or seasonal activity patterns. 相似文献
3.
Summary The temperatures at which chlorophyll fluorescence yield is substantially increased and the temperatures at which the quantum yield for CO2 uptake is irreversibly inhibited were measured for three shortgrass prairie species. The experimental taxa include, a cool season species (Agropyron smithii), a warm season species (Bouteloua gracilis), and a species which grows throughout the cool and warm seasons (Carex stenophylla). Agropyron smithii exhibited lower high temperature damage thresholds (43°C in cool grown plants, 46°C in warm grown plants), relative to the other two species. Bouteloua gracilis exhibited the highest tolerance to high temperature, with threshold values being 44–49°C for cool grown plants and 53–55°C for warm grown plants. Carex stenophylla exhibited threshold values which were intermediate to the other two species (43–47°C for cool grown plants, and 51–53°C for warm grown plants). Seasonal patterns in the fluorescence rise temperatures of field grown plants indicated acclimation to increased temperatures in all three species. The results demonstrate a correlation between the high temperature thresholds for damage to the photosynthetic apparatus, and in situ seasonal phenology patterns for the three species. 相似文献
4.
5.
The role of water depth and soil temperature in determining initial composition of prairie wetland coenoclines 总被引:8,自引:0,他引:8
In this study, we examined the effects of water depth and temperature on seedling recruitment from a prairie wetland seed bank. We collected seed-bank samples from natural and restored prairie pothole wetlands in northwestern Iowa and combined them into a single sample. We examined seedling recruitment from this seed-bank sample in an experimental study using a factorial design of 4 temperature treatments (5° night and 15° day to 20° night and 30° day) and 3 water-depth treatments (0, 2, and 7 cm).Principal Components Analysis showed that both water depth and temperature had significant effects on the composition of the seedling community as measured by changes in relative stem density and biomass. Water depth had its strongest effects on stem density while temperature had its strongest effects on biomass.For the 22 most common species, stem density varied with water depth for 95% of the species and with temperature for 50% of the species. Most species with water depth responses had lower stem counts as water depth increased, and for the majority of species with temperature responses stem density increased with temperature.Total, annual, and perennial species richness was negatively correlated with water depth. Total and annual species richness was positively correlated to temperature, while perennial species richness was unresponsive to temperature. In addition, species found at low elevations as adults emerged at higher rates in the deep water treatments while species that occurred at higher elevations as adults had their highest emergence rates in the low water treatments.Our results suggest that differences in environmental conditions along coenoclines can affect the initial distribution of species emerging from the soil seed bank. Water depth sorted seedlings according to their adult water-depth tolerances, and temperature determined the proportion of annuals in the seedling community. 相似文献
6.
We tested the hypothesis that black-tailed prairie dogs (Cynomys ludovicianus) influence avian community structure on the shortgrass prairie. We surveyed 36 prairie dog towns and 36 paired sites without prairie dogs during summer and fall of 1997, 1998, and 1999 in the Oklahoma Panhandle. Our surveys totaled 9,040 individual observations for 73 avian species. Significantly distinct avian communities were present on prairie dog towns when compared to sites within four different macrohabitats of the surrounding landscape: open rangeland, scrub/sandsage (Artemisia filifolia) habitats, Conservation Reserve Program (CRP) plots, and fallow crop fields. Relative densities of all bird species combined was higher on prairie dog towns versus paired sites in summer and fall. Mean species richness of birds was significantly higher on prairie dog towns than paired sites during summer, but there were no significant differences in fall. Open rangeland had the highest mean species richness in fall. Assemblages of avian communities differed significantly between prairie dog towns and the four macrohabitat types during summer. Burrowing owls (Athene cunicularia), killdeer (Charadrius vociferous), horned larks (Eremophila alpestris), and meadowlarks (Sturnella spp.) were positively and significantly associated with prairie dog towns during summer, while horned larks and ferruginous hawks (Buteo regalis) were significantly associated with prairie dog towns during fall. Even in their current remnant state, black-tailed prairie dogs continue to play a significant role in the assembly of ecological communities across the Great Plains. Conservation of prairie dogs goes well beyond a single species, and is an important strategy for the preservation of the prairie ecosystem as a whole. 相似文献
7.
The structure of vegetation, and how this structure varies across a landscape, is crucial to understanding the distribution of wildlife species. Between 2002 and 2004, we sampled small mammal communities and measured vegetation structure at 185 locations across a range of disturbance regimes in a shortgrass prairie ecosystem in southeastern Colorado, USA. At each sampling location, the local disturbance regime was some combination of varying intensity of livestock grazing, military training activity, and fire. Vegetation structural characteristics measured included percent bare ground, basal cover, litter, shrub density, and mean grass and shrub height. Rodent communities were described by richness, diversity, total and per capita biomass, and species abundances. Northern grasshopper mice (Onychomys leucogaster), Ord's kangaroo rats (Dipodomys ordii), silky pocket mice (Perognathus flavus), western harvest mice (Reithrodontomys megalotis), white-footed mice (Peromyscus leucopus), southern plains wood rats (Neotoma micropus), thirteen-lined ground squirrels (Spermophilus tridecemlineatus), deer mice (Peromyscus maniculatus), and spotted ground squirrels (Spermophilus spilosoma) accounted for >99 % of all captures. Canonical correlation analysis was used to assess the relationship between small mammals and vegetation structure. The first two canonical variates explained over 50 % of the variation in vegetation structure and were related to the ratio of bare ground to basal coverage and litter accumulation. Rodent community indices were most strongly related to litter accumulation and shrub density, though the models had low explanatory power. Our results agreed with published findings regarding microhabitat associations and indicated small mammal communities benefited from a system of interacting disturbances and the resulting landscape mosaic. 相似文献
8.
土壤水分状况对花生和早稻叶片气体交换的影响 总被引:11,自引:3,他引:8
通过田间测坑试验研究了长期处于不同土壤水分状况下花生和早稻叶片气体交换的一些特点.结果表明,花生分枝期轻度和中度水分胁迫使气孔导度(Gs)和蒸腾速率(Tr)略有下降,净光合速率(Pn)和叶片水分利用效率(WUE)减小,轻度水分胁迫Gs/Tr略有上升而中度胁迫Gs/Tr变小.花生结荚期轻度和中度水分胁迫都使Gs、Tr、Gs/Tr和Pn显著降低,WUE大幅度上升.花生结荚期明显受土壤水分胁迫影响.早稻灌浆期轻度和中度水分胁迫Gs、Tr和Gs/Tr变化不显著,Pn和WUE增加,并且轻度水分胁迫下籽粒产量增加.Gs和Gs/Tr变化情况相结合可以作为作物水分胁迫程度的一个参考指标,即如果Gs和Gs/Tr同时下降则作物已经受到水分胁迫影响. 相似文献
9.
The effects of photosynthetically active radiation (PAR), leaf temperature and the leaf-to-air water vapor concentration drop on net CO2 uptake and water vapor conductance were surveyed for 14 species of ferns. Most previous studies indicated that ferns have extremely low maximal rates of net CO2 uptake, below 2 umol m?2 s?1, whereas the average maximal rate observed here at 250 C was 7 umol m?2 s?1. Net CO2 uptake reached 90% of saturation at an average PAR (400 to 700 nm) of only 240 umol m?2 s?1, consistent with the typically shaded habitats of most ferns. Maximal CO2 uptake rates were positively correlated with the PAR for 90% saturation (r2=0.59), the chlorophyII per unit leaf area (r2=0.30), the water vapor conductance (r2=0.65), and the CO2 residual conductance (r2=0.69). A higher water vapor conductance (gwv) was correlated with a greater fractional change in gwv as the leaf-to-air water vapor concentration drop (Δcwv) was raised from 5to20 g m?3 (r2=0.90). Specifically, for species with low gwv of about I mm s?1 the ratio of gwv at Δcwv= 5 g m?3 to that at Δcwv= 20 g m?3 was near 1, but it was near 2 for species with gwv of about 4 mm s?1. Such a relationship, which can prevent excessive transpiration, has apparently not previously been pointed out in surveys of other plant groups. 相似文献
10.
The water exchange has been measured in oocytes of siredon mexicanum and rana temporaria, and in unfertilized eggs and early gastrulae of the former species, by recording the D2O? H2O exchange with the cartesian diver balance. In oocytes, where no diffusion barrier to water is demonstrable, the temperature coefficient Q10 for the exchange of water is about 1.3–1.4, corresponding to that of free diffusion. in unfertilized eggs, and in early gastrulae the exchange is considerably slowed down, indicating that a surface membrane to some extent limits the rate of exchange. at the same time the Q10 value is increased, lying in the range 2.3–3.8. since it is most likely that the exchange even in this case occurs by diffusion, but through membrane pores, it is concluded that the area available for diffusion (pore size or number, or both) increases with temperature. 相似文献
11.
The discontinuous gas exchange cycle (DGC), the cyclic release of CO(2) and uptake of O(2), were investigated in workers and female and male alates of the red imported fire ant, Solenopsis invicta Buren, using real-time CO(2) emission measurement by flow-through respirometry. All S. invicta castes displayed discontinuous emission of CO(2) in the temperature range of 15-25 degrees C, but only male alates and workers exhibited a DGC at 30 degrees C. The closed (C) and flutter (F) periods of the DGC were distinguishable in alates of both sexes at the lowest temperature, but not clearly differentiated in females at temperatures above 15 degrees C, in males above 20 degrees C, or workers at any temperature. DGC frequency increased for all castes as temperature increased, ranging from a low of 0.9+/-0.05 mHz (male alates at 15 degrees C) to 18+/-0.79 mHz (workers at 30 degrees C). O period (or burst) volumes of all castes decreased as temperature increased, and increased with body mass - this mass effect was most pronounced at lower temperatures. Q(10) values for DGC frequency (4.27, 5.81, and 5.62 for workers, female and male alates, respectively) were high compared with Q(10)'s for standard Vdot;(CO(2)). Differences in the salient characteristics of the DGC between castes are presented and discussed, and S. invicta DGC patterns are compared to known values for some other ant species. 相似文献
12.
Photoinhibition in Vitis californica: interactive effects of sunlight, temperature and water status 总被引:7,自引:5,他引:2
Abstract. In a series of factorial experiments with cultivated Vitis californica Benth. (California wild grape) growth outdoors in full sun, we examined the effects of sunlight, temperature and water status on net CO2 uptake and PSH chlorophyll fluorescence at 77K. Exposure to either high light or high temperature caused reductions in PSH activity followed by partial or complete overnight recovery. Upon simulataneous exposure to high light and high temperature, PSH inhibition was severe and persistent. The maximum chlorophyll fluorescence (FM ) and the ratio of variable to maximum fluorescence (Fv /FM ) differed in their responses to combinations of light and temperature. At both low and high light. FM declined with increasing temperature over a wide temperature range, while Fv /FM exhibited a similar sensitivity to temperature only at high light. Net CO2 uptake declined by mid-afternoon and recovered by the next morning in most leaves, regardless of incident light or temperature. However, high-light leaves exhibited severe and lasting declines if temperatures exceeded 45°C. Water-stressed leaves exposed to high light exhibited greater reductions of net CO2 uptake than water-stressed leaves exposed to low light. However, the degree of light-dependent decline in PSH fluorescence (FM and Fv /FM ) did not vary with water status, indicating that reduced PSH activity was not a primary cause of reduced carbon gain during water stress. 相似文献
13.
水分胁迫和温度对夏蜡梅叶片气体交换和叶绿素荧光特性的影响 总被引:23,自引:2,他引:23
夏蜡梅是浙江省特有的濒危单种属物种.本文研究了不同程度土壤水分胁迫和不同温度处理对2年生盆栽夏蜡梅光合作用的影响.结果表明:轻度和中度水分胁迫下夏蜡梅净光合速率分别下降至对照的92.3%和74.3%,净光合速率的降低主要由气孔限制引起;重度水分胁迫下,净光合速率仅为对照的44.4%,主要由非气孔限制引起.夏季夏蜡梅的光合适宜温度范围在20 ℃~28 ℃,39 ℃下其净光合速率、水分利用效率和最大光化学效率显著降低,暗呼吸速率和蒸腾速率显著升高.随着水分胁迫的加重及处理温度的升高,夏蜡梅光补偿点上升,光饱和点、表观量子效率和最大净光合速率下降.重度水分胁迫及高温是制约夏蜡梅生存的重要环境因子. 相似文献
14.
Nitrogen nutrition and water stress effects on leaf photosynthetic gas exchange and water use efficiency in winter wheat 总被引:7,自引:0,他引:7
The responses of gas exchange and water use efficiency to nitrogen nutrition for winter wheat were investigated under well-watered and drought conditions. The photosynthetic gas exchange parameters of winter wheat are remarkably improved by water and nitrogen nutrition and the regulative capability of nitrogen nutrition is influenced by water status. The effects of nitrogen nutrition on photosynthetic characteristics and on the limited factors to photosynthesis are not identical under different water status. Intrinsic water use efficiency (WUE(i)) of the plants at the high-N nutrition was decreased by a larger value than that of the plants in the low-N treatment due to a larger decrease in photosynthetic rate than in transpiration rate. Carbon isotope composition of plant material (delta(p)) is increased by the increase of drought intensity. The delta(p) at a given level of C(i)/C(a) is reduced by nitrogen deficiency. Leaf carbon isotope discrimination (Delta) is increased by the increase of nitrogen nutrition and decreased by the increase of drought intensity. Transpirational water use efficiency (WUE(t)) is negatively correlated with Delta in both nitrogen supply treatments and increased with the nitrogen supply. 相似文献
15.
The photosynthetic rate of water stressed leaves of Primula palinuri was reduced drastically by stomatal closure, not by limitations imposed on the capacity of the photosynthetic apparatus, when water loss exceeded 20% of the water content of turgid leaves. The sudden decrease in phtosynthesis was not observed when the lower epidermis of the leaves had been removed. In these ‘stripped’ leaves, inhibition of photosynthesis increased only gradually during the wilting caused by increasing water stress and was complete when the relative water content was as low as 20% compared with the initial value. This corresponded to a water potential of about-40 bar. The light intensity at which half-maximum rates of photosynthesis were observed decreased as stress increased. In intact leaves photosynthesizing in the presence of CO2, light scattering, which is a measure of thylakoid energization, increased steeply during stomatal closure. The observed increase corresponded to the light scattering level measured in the absence of CO2. When the lower epidermis was removed, no sudden increase in thylakoid energization could be observed during dehydration. Thylakoid energization remained high even at low water potentials. It decreased drastically only below a relative water content of 20%. Irrespective, of the extent of water stress, CO2 fixation of stripped leaves increased when the oxygen content of air was reduced from 21% to 2%. Usually the transition from 21 to 2% O2 was accompanied by increased thylakoid energization. The increase in energization was more pronounced below than above a relative water content of 50%. The data show that energy-dissipating photorespiratory CO2 turnover in the in tercellular space of water-stressed leaves whose stomata are closed decreases only slowly as water stress increases. Respiratory CO2 production by leaves in the dark was even more resistant to water stress than photosynthesis. It was still significant at water potentials as low as-80 bar. 相似文献
16.
Effects of water stress and high temperature on gas exchange and chlorophyll fluorescence in Triticum aestivum L. 总被引:1,自引:0,他引:1
I. A. Hassan 《Photosynthetica》2006,44(2):312-315
Wheat plants grown in controlled growth chambers were exposed to drought stress (DS) and high temperature (HT) singly and
in combination (DS+HT). The effects of these two stresses on net photosynthetic rate (P
N), stomatal conductance (g
s), intercellular CO2 concentration (C
i), quantum efficiency of photosystem 2 (ΦPS2), variable to maximum chlorophyll (Chl) fluorescence (Fv/Fm), photochemical (qp) and non-photochemical (NPQ) Chl fluorescence, and yield were investigated. Grain yield was decreased by 21 % due to DS,
while it was increased by 26 % due to HT. P
N, g
s, C
i, and Chl fluorescence were dramatically reduced to DS, HT, and their interaction, except NPQ which showed an increase due
to HT. 相似文献
17.
Summary An empirical model for predicting net photosynthesis (PN) and dark respiration (RD) in the field was developed and tested for Bouteloua gracilis (H.B.K.) Lag., the dominant C4 grass of the North American shortgrass prairie. PNis predicted as a function of soil water potential, canopy air temperature, irradiance, and plant age, while RDis expressed as a function of soil water potential and temperature. The model accounted for 85% of the variability in the data base used to estimate parameter values. Results of a validation test showed good agreement between observed and predicted PNrates, suggesting this approach would be useful as a submodel of a grassland ecosystem model. 相似文献
18.
Cechin I Corniani N de Fátima Fumis T Cataneo AC 《Radiation and environmental biophysics》2008,47(3):405-413
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants. 相似文献
19.
Loretta Gratani 《Plant biosystems》2013,147(1):19-24
ABSTRACT Gas exchange temperature dependence in Quercus ilex shrubs growing in the Mediterranean maquis was analysed. The gas exchange trend was monitored during the year: photosynthetic activity (A net) reached the highest average rates in early spring and autumn (12.5 µmol m-2s-1 was the absolute maximum A net measured) and the lowest rates were monitored in the middle of June. There was a good correlation (r = 0.72) between A net and g s (A net = 4.1246 ln g s + 4316; P < 0.01), indicating that stomatal control of CO2 diffusion plays an important role in controlling photosynthetic activity. Leaf temperature allowing the highest photosynthetic and stomatal conductance rates of Quercus ilex were in the range 17.5 – 29°C. A net and gs dropped below half its maximum value when leaf temperatures were below 11.5°C and above 35.7°C. Transpiration rates (E) were strongly related to leaf temperature; E increased as leaf temperature increased and the highest E rates were monitored in June, despite a 46% decrease in g s. Leaf water loss from transpiration, during the drought period, could result in leaf water stress which would exacerbate heat effects on photosynthesis. During summer, the increase in leaf temperatures decreased g s which in turn decreased A net. Consequently, stomatal control in Quercus ilex may be considered as an adaptive strategy during drought. 相似文献