首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Idiopathic torsion dystonia (ITD) is characterized by involuntary twisting movements and postures. A gene for this disorder, DYT1, was mapped to chromosome 9q34 in 12 Ashkenazi Jewish (AJ) families and one large non-Jewish kindred. In the AJ population, strong linkage disequilibrium exists between DYT1 and adjacent markers within a 2-cM region. The associated haplotype occurs in >90% of early limb-onset AJ cases. We examined seven non-Jewish ITD families of northern European and French Canadian descent to determine the extent to which early-onset ITD in non-Jews maps to DYT1. Results are consistent with linkage to the DYT1 region. Affected individuals in these families are clinically similar to the AJ cases; i.e., the site of onset is predominantly in the limbs and at least one individual in each pedigree had onset before age 12 years. None carries the AJ haplotype; therefore, they probably represent different mutations in the DYT1 gene. The two French Canadian families, however, display the same haplotype. Estimates of penetrance in non-Jewish families range from .40 to .75. We identified disease gene carriers and, with adjustments for age at onset, obtained a direct estimate of penetrance of .46. This is consistent with estimates of 30%–40% in the AJ population. Two other non-Jewish families with atypical ITD (later onset and/or cranial or cervical involvement) are not linked to DYT1, which indicates involvement of other genes in dystonia.  相似文献   

2.
The variant red phenotype in Holstein cattle is indistinguishable from the traditional e/e recessive red phenotype caused by a mutation in melanocortin 1 receptor, but is inherited as a dominant trait in relation to black. Co-segregation analysis in four half-sib families segregating for variant red was conducted, excluding melanocortin 1 receptor , agouti signalling protein , attractin and melatonin receptor 1A as causative genes. However, variant red co-segregated with markers in a region of BTA27 that includes beta-defensin 103 ( DEFB103 ). Two newly identified microsatellites and 5 SNPs 5' of DEFB103 were used for linkage mapping in four segregating families (LOD = 3.26). One haplotype was inherited in VR cattle in a 6-generation pedigree.  相似文献   

3.
The vitamin K epoxide reductase (VKORC1) is a key enzyme in the vitamin K cycle impacting various biological processes. VKORC1 genetic variability has been extensively studied in the context of warfarin pharmacogenetics revealing different distributions of VKORC1 haplotypes in various populations. We previously identified the VKORC1 Asp36Tyr mutation that was associated with warfarin resistance and with distinctive ethnic distribution. In this study, we performed haplotype analysis using Asp36Tyr and seven other VKORC1 markers in Ashkenazi and Ethiopian-Jewish and non-Jewish individuals. The VKORC1 variability was represented by nine haplotypes (V1-V9) that could be grouped into two distinct clusters (V1-V3 and V4-V9) with intra-cluster difference limited to two nucleotide changes. Phylogeny analysis suggested that these haplotypes could have developed from an ancestral variant, the common V8 haplotype (40 % in all population samples), after ten single mutation events. Asp36Tyr was exclusive to the V5 haplotype of the second cluster. Two haplotypes V5 and V4, distinguished only by Asp36Tyr, were prevalent in both Ethiopian population samples. The V2 haplotype, belonging to the first cluster, was the second most prevalent haplotype in the Ashkenazi population sample (15.8 %) but relatively uncommon in the Ethiopian origin (4.5-4.7 %). We discuss the genetic diversity among studied populations and its potential impact on warfarin-dose management in certain populations of African and European origin.  相似文献   

4.
Hermansky-Pudlak syndrome (HPS) is a group of rare, recessive disorders in which oculocutaneous albinism, progressive pulmonary fibrosis, bleeding diathesis, and other abnormalities result from defective biogenesis of multiple cytoplasmic organelles. Seven different HPS genes are known in humans; in mouse, at least 16 loci are associated with HPS-like mutant phenotypes. In the rat, only two HPS models are known, Fawn-hooded (FH) and Tester Moriyama (TM), non-complementing strains in which HPS-like hypopigmentation and platelet storage pool deficiency result from a mutation of the Ruby (red eyed dilution; R) locus on Chromosome (Chr) 1. We have identified the R locus as the Rab38 gene, establishing that rat R is homologous to mouse chocolate (cht). Further, we show that FH and TM rats have identical Rab38 Met1Ile mutations, occurring on an identical Chr 1 marker allele haplotype, indicating that these two strains derive from a common ancestor. This ancestor appears to have been a sub-strain of the outbred Long Evans (LE) strain, and several modern LE sub-strains carry the Rab38 Met1Ile R mutation on the same Chr 1 marker haplotype. These findings have significant implications for the many past and ongoing studies that involve the FH and LE-derivative rat strains. Hermansky-Pudlak syndrome (HPS; MIM 203300) is a group of autosomal recessive diseases in which oculocutaneous albinism (OCA), progressive and fatal pulmonary fibrosis, and bleeding diathesis due to platelet storage pool deficiency result from defects in the biogenesis of specific cytoplasmic organelles and granules: melanosomes, lysosomes, and platelet dense granules (reviewed in Spritz 1999, 2000; Spritz et al. 2003). In humans, seven different HPS genes are known (Oh et al. 1996; DellAngelica et al. 1999; Anikster et al. 2001; Suzuki et al. 2002; Li et al. 2003; Zhang et al. 2003). In the mouse, at least 16 loci associated with HPS-like mutant phenotypes are known, seven of which are homologous to the human HPS loci (Swank et al. 1998; Bennett and Lamoreux 2003). The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession number AY425759. (Naoki Oiso) Present address: Department of Dermatology, Saiseikai Tondabayashi Hospital, Tondabayashi, Osaka 584-0082, Japan.  相似文献   

5.

Background

In a previous study in the Fleckvieh dual purpose cattle breed, we mapped a quantitative trait locus (QTL) affecting milk yield (MY1), milk protein yield (PY1) and milk fat yield (FY1) during first lactation to the distal part of bovine chromosome 5 (BTA5), but the confidence interval was too large for positional cloning of the causal gene. Our objective here was to refine the position of this QTL and to define the candidate region for high-throughput sequencing.

Methods

In addition to those previously studied, new Fleckvieh families were genotyped, in order to increase the number of recombination events. Twelve new microsatellites and 240 SNP markers covering the most likely QTL region on BTA5 were analysed. Based on haplotype analysis performed in this complex pedigree, families segregating for the low frequency allele of this QTL (minor allele) were selected. Single- and multiple-QTL analyses using combined linkage and linkage disequilibrium methods were performed.

Results

Single nucleotide polymorphism haplotype analyses on representative family sires and their ancestors revealed that the haplotype carrying the minor QTL allele is rare and most probably originates from a unique ancestor in the mapping population. Analyses of different subsets of families, created according to the results of haplotype analysis and availability of SNP and microsatellite data, refined the previously detected QTL affecting MY1 and PY1 to a region ranging from 117.962 Mb to 119.018 Mb (1.056 Mb) on BTA5. However, the possibility of a second QTL affecting only PY1 at 122.115 Mb was not ruled out.

Conclusion

This study demonstrates that targeting families segregating for a less frequent QTL allele is a useful method. It improves the mapping resolution of the QTL, which is due to the division of the mapping population based on the results of the haplotype analysis and to the increased frequency of the minor allele in the families. Consequently, we succeeded in refining the region containing the previously detected QTL to 1 Mb on BTA5. This candidate region contains 27 genes with unknown or partially known function(s) and is small enough for high-throughput sequencing, which will allow future detailed analyses of candidate genes.  相似文献   

6.

Background

Frontotemporal lobar degeneration (FTLD) represents a clinically, pathologically and genetically heterogenous neurodegenerative disorder, often complicated by neurological signs such as motor neuron-related limb weakness, spasticity and paralysis, parkinsonism and gait disturbances. Linkage to chromosome 9p had been reported for pedigrees with the neurodegenerative disorder, frontotemporal lobar degeneration (FTLD) and motor neuron disease (MND). The objective in this study is to identify the genetic locus in a multi-generational Australian family with FTLD-MND.

Methods

Clinical review and standard neuropathological analysis of brain sections from affected pedigree members. Genome-wide scan using microsatellite markers and single nucleotide polymorphism fine mapping. Examination of candidate genes by direct DNA sequencing.

Results

Neuropathological examination revealed cytoplasmic deposition of the TDP-43 protein in three affected individuals. Moreover, we identify a family member with clinical Alzheimer's disease, and FTLD-Ubiquitin neuropathology. Genetic linkage and haplotype analyses, defined a critical region between markers D9S169 and D9S1845 on chromosome 9p21. Screening of all candidate genes within this region did not reveal any novel genetic alterations that co-segregate with disease haplotype, suggesting that one individual carrying a meiotic recombination may represent a phenocopy. Re-analysis of linkage data using the new affection status revealed a maximal two-point LOD score of 3.24 and a multipoint LOD score of 3.41 at marker D9S1817. This provides the highest reported LOD scores from a single FTLD-MND pedigree.

Conclusion

Our reported increase in the minimal disease region should inform other researchers that the chromosome 9 locus may be more telomeric than predicted by published recombination boundaries. Moreover, the existence of a family member with clinical Alzheimer's disease, and who shares the disease haplotype, highlights the possibility that late-onset AD patients in the other linked pedigrees may be mis-classified as sporadic dementia cases.  相似文献   

7.

Aims

Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis.

Methods and Results

Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe−/− mice (r2 = 0.69; p<0.0001).

Conclusion

A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis.  相似文献   

8.
Familial isolated growth hormone deficiency (IGHD) has been associated with complete deletions of the hGH-N gene encoding the pituitary growth hormone (GH) in a large number of cases. However, there is still no alternative empirical explanation for the remaining familial or non-familial IGHD cases. We studied a large kindred including five IGHD-affected first cousins to determine possible IGHD inheritance and whether the hGH-N gene was the cause of IGHD in this pedigree. Sex-linked and autosomal recessive transmission of IGHD in this kindred was rejected. Autosomal dominant inheritance was the most probable explanation according to a model of one locus with two alleles, one being dominant for IGHD, under genetic modifiers or epistasis. Southern blotting analysis (BamHI and HindIII digestions) was used to determine whether the hGH-N gene was present in the patients and their family members. Because we found that the hGH-N gene was present, five restriction fragment length polymorphisms (RFLPs; HincII, MspI-A and B, and BglII-A and B) linked to the hGH-N gene were used to try to identify the possible RFLP haplotypes in the pedigree that could be markers or associated with the abnormal hGH-N alleles responsible for IGHD. From the haplotype analysis, it appeared that other genes not linked to the hGH-N gene cluster were the cause of the IGHD phenotype in this kindred. An alternative conclusion could be that the hGH-N gene was responsible for IGHD in this kindred, if a mutation (gene conversion) at the MspI-B site or a reciprocal recombination event between the HincII and MspI-B sites occurred from generation P to F1 and a similar event took place from generation F1 to F2. The non-significant GH responses of patients to the growth releasing factor test confirmed that the hGH-N gene structural product or some step in its regulation was responsible for causing IGHD in this kindred. We suggest that genetic micromutations in the hGH-N gene are present and are responsible for IGHD. We developed a method using the polymerase chain reaction to amplify a 790-bp fragment of the hGH-N gene. The fragment spanned from the second part of the dyad symmetry region in the non-transcribed 5 end of the hGH-N gene to 9 bp before the alternative splice-acceptor site in exon 3. The expected fragment was verified by its digestion with seven diagnostic resctriction endonucleases (BamHI, FspI, PstI, NdeI, BssHII, BglII and HincII). The results showed no deletions or insertions greater than 35 bp in the hGH-N amplified fragment from the DNAs of the IGHD patients and their family members.Presented, in part, at the VIth International Congress of Auxology, Madrid, Spain, 15–19 September 1991.  相似文献   

9.
10.
Wang X  Li X  Zhang YB  Zhang F  Sun L  Lin J  Wang DM  Wang LY 《PloS one》2011,6(10):e24838

Background

Familial hypercholesterolemia (FH) is a heritable disorder that can increase the risk of premature coronary heart disease. Studies suggest there are substantial genetic heterogeneities for different populations. Here we tried to identify novel susceptibility loci for FH in a Chinese pedigree.

Methodology/Principal Findings

We performed a SNP-based genome-wide linkage scan with the Chinese FH pedigree. Two suggestive linkage loci not previously reported were identified on chromosomes 3q25.1-26.1 (NPL = 9.01, nominal P<0.00001, and simulated occurrence per genome scan = 1.08) and 21q22.3 (NPL = 8.95, nominal P<0.00001, and simulated occurrence per genome scan = 1.26). In the interaction analysis with a trimmed version of the pedigree, we obtained a significantly increased joint LOD score (2.70) compared with that obtained when assuming the two loci uncorrelated, suggesting that more than one locus was involved in this pedigree. Exon screening of two candidate genes ABCG1 and LSS from one of the suggestive region 21q22 didn''t report any causative mutations.

Conclusions/Significances

These results confirm complex etiologies and suggest new genetic casual factors for the FH disorder. Further study of the two candidate regions is advocated.  相似文献   

11.

Key message

The association of natural genetic variations of salt-responsive candidate genes belonging to different gene families with salt-tolerance phenotype and their haplotype variation in different geographic regions.

Abstract

Soil salinity covers a large part of the arable land of the world and is a major factor for yield losses in salt-sensitive crops, such as rice. Different gene families that respond to salinity have been identified in rice, but limited success has been achieved in developing salt-tolerant cultivars. Therefore, 21 salt stress-responsive candidate genes belonging to different gene families were re-sequenced to analyse their genetic variation and association with salt tolerance. The average single nucleotide polymorphism (SNP) density was 16 SNPs per kbp amongst these genes. The identified nucleotide and haplotype diversity showed comparatively higher genetic variation in the transporter family genes. Linkage disequilibrium (LD) analysis showed significant associations of SNPs in BADH2, HsfC1B, MIPS1, MIPS2, MYB2, NHX1, NHX2, NHX3, P5CS1, P5CS2, PIP1, SIK1, SOS1, and SOS2 genes with the salt-tolerant phenotype. A combined analysis of SNPs in the 21 candidate genes and eight other HKT transporter genes produced two separate clusters of tolerant genotypes, carrying unique SNPs in the ion transporter and osmoticum-related genes. Haplotype network analysis showed all the major and few minor alleles distributed over distant geographic regions. Minor haplotypes may be recently evolved alleles which migrated to distant geographic regions and may represent recent expansion of Indian wild rice. The analysis of genetic variation in different gene families identified the relationship between adaptive variations and functional significance of the genes. Introgression of the identified alleles from wild relatives may enhance the salt tolerance and consequently rice production in the salinity-affected areas.
  相似文献   

12.
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.  相似文献   

13.
Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted.  相似文献   

14.

Background

The 12q24 locus entails at least one gene responsible for hypercholesterolemia. Within the 12q24 locus lies the gene of proteasome modulator 9 (PSMD9). PSMD9 is in linkage with type 2 diabetes (T2D), T2D-nephropathy and macrovascular pathology in Italian families and PSMD9 rare mutations contribute to T2D.

Aims

In the present study, we aimed at determining whether the PSMD9 T2D risk single nucleotide polymorphisms (SNPs) IVS3 + nt460 A > G, IVS3 + nt437 T > C and E197G A > G are linked to hypercholesterolemia in 200 T2D Italian families.

Methods

We characterized 200 Italian families for presence and/or absence of hypercholesterolemia characterized by LDL levels ≥ 100 mg/dl in drug-naïve patients and/or presence of a diagnosis of hypercholesterolemia in a patient treated with statin medication. The phenotypes were described as unknown in all cases in which the diagnosis was either unclear or the data were missing. We tested in the 200 Italians families for evidence of linkage of the PSMD9 SNPs with hypercholesterolemia. The non-parametric linkage analysis was performed for the qualitative phenotype by using the Merlin software; the Lod score and correspondent P-value were calculated. For the significant linkage score, 1000 replicates were performed to calculate the empirical P-value.

Results

The PSMD9 gene SNPs studied show linkage to hypercholesterolemia. The results are not due to random chance.

Conclusions

PSMD9 should be tested in all populations reporting linkage to hypercholesterolemia within the chromosome 12q24 locus. The impact of this gene on hypercholesterolemia and contribution to cardio- and cerebrovascular events may be high.  相似文献   

15.
We analyzed nine multigenerational families with ascertained affective spectrum disorders in northern Sweden's geographically isolated population of Vasterbotten. This northern Swedish population, which originated from a limited number of early settlers approximately 8,000 years ago, is genetically more homogeneous than outbred populations. In a genomewide linkage analysis, we identified three chromosomal loci with multipoint LOD scores (MPLOD) >/=2 at 9q31.1-q34.1 (MPLOD 3.24), 6q22.2-q24.2 (MPLOD 2.48), and 2q33-q36 (MPLOD 2.26) under a recessive affected-only model. Follow-up genotyping with application of a 2-cM density simple-tandem-repeat (STR) map confirmed linkage at 9q31.1-q34.1 (MPLOD 3.22), 6q23-q24 (MPLOD 3.25), and 2q33-q36 (MPLOD 2.2). In an initial analysis aimed at identification of the underlying susceptibility genes, we focused our attention on the 9q locus. We fine mapped this region at a 200-kb STR density, with the result of an MPLOD of 3.70. Genealogical studies showed that three families linked to chromosome 9q descended from common founder couples approximately 10 generations ago. In this approximately 10-generation pedigree, a common ancestral haplotype was inherited by the patients, which reduced the 9q candidate region to 1.6 Mb. Further, the shared haplotype was observed in 4.2% of patients with bipolar disorder with alternating episodes of depression and mania, but it was not observed in control individuals in a patient-control sample from the Vasterbotten isolate. These results suggest a susceptibility locus on 9q31-q33 for affective disorder in this common ancestral region.  相似文献   

16.

Key message

A major novel quantitative disease resistance locus, qRfg_Gm06, for Fusarium graminearum was genetically mapped to chromosome 6. Genomic-assisted haplotype analysis within this region identified three putative candidate genes.

Abstract

Fusarium graminearum causes seed, root rot, and seedling damping-off in soybean which contributes to reduced stands and yield. A cultivar Magellan and PI 567516C were identified with low and high levels of partial resistance to F. graminearum, respectively. Quantitative disease resistance loci (QDRL) were mapped with 241 F7:8 recombinant inbred lines (RILs) derived from a cross of Magellan?×?PI 567516C. Phenotypic evaluation for resistance to F. graminearum used the rolled towel assay in a randomized incomplete block design. The genetic map was constructed from 927 polymorphic single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers. One major QDRL qRfg_Gm06 was detected and mapped to chromosome 6 with a LOD score of 20.3 explaining 40.2% of the total phenotypic variation. This QDRL was mapped to a?~400 kb genomic region of the Williams 82 reference genome. Genome mining of this region identified 14 putative candidate disease resistance genes. Haplotype analysis of this locus using whole genome re-sequencing (WGRS) of 106 diverse soybean lines narrowed the list to three genes. A SNP genotyping Kompetitive allele-specific PCR (KASP) assay was designed for one of the genes and was validated in a subset of the RILs and all 106 diverse lines.
  相似文献   

17.
18.
Levanat S  Musani V  Cvok ML  Susac I  Sabol M  Ozretic P  Car D  Eljuga D  Eljuga L  Eljuga D 《Gene》2012,498(2):169-176
BRCA1 and BRCA2 genes from 167 candidates (145 families) were scanned for mutations. We identified 14 pathogenic point mutations in 17 candidates, 9 in BRCA1 and 5 in BRCA2. Of those, 11 have been previously described and 3 were novel (c.5335C>T in BRCA1 and c.4139_4140dupTT and c.8175G>A in BRCA2). No large deletions or duplications involving BRCA1 and BRCA2 genes were identified. No founder mutations were detected for the Croatian population. Croatia shares most of the mutations with neighboring Slovenia and also with Germany, Austria and Poland. Two common sequence variants in BRCA1, c.2077G>A and c.4956G>A, were found more frequently in mutation carriers compared to healthy controls. No difference in BRCA2 variants was detected between the groups. Haplotype inference showed no difference in haplotype distributions between deleterious mutation carriers and non-carriers in neither BRCA1 nor BRCA2. In silico analyses identified one BRCA1 sequence variant (c.4039A>G) and two BRCA2 variants (c.5986G>A and c.6884G>C) as harmful with high probability, and inconclusive results were obtained for our novel BRCA2 variant c.3864_3866delTAA. Combination of QMPSF and HRMA methods provides high detection rate and complete coverage of BRCA1/2 genes. Benefit of BRCA1/2 mutation testing is clear, since we detected mutations in young unaffected women, who will be closely monitored for breast and ovarian cancer.  相似文献   

19.

Background

Desmin-related myopathy (DRM) is an autosomally inherited skeletal and cardiac myopathy, mainly caused by dominant mutations in the desmin gene (DES). We describe new families carrying the p.S13F or p.N342D DES mutations, the cardiac phenotype of all carriers, and the founder effects.

Methods

We collected the clinical details of all carriers of p.S13F or p.N342D. The founder effects were studied using genealogy and haplotype analysis.

Results

We identified three new index patients carrying the p.S13F mutation and two new families carrying the p.N342D mutation. In total, we summarised the clinical details of 39 p.S13F carriers (eight index patients) and of 21 p.N342D carriers (three index patients). The cardiac phenotype of p.S13F carriers is fully penetrant and severe, characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement. Although muscle weakness is a prominent and presenting symptom in p.N342D carriers, their cardiac phenotype is similar to that of p.S13F carriers. The founder effects of p.S13F and p.N342D were demonstrated by genealogy and haplotype analysis.

Conclusion

DRM may occur as an apparently isolated cardiological disorder. The cardiac phenotypes of the DES founder mutations p.S13F and p.N342D are characterised by cardiac conduction disease and cardiomyopathy, often with right ventricular involvement.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-011-0233-y) contains supplementary material, which is available to authorized users.  相似文献   

20.

Background

SNP (single nucleotide polymorphisms) genotype data are increasingly available in cattle populations and, among other things, can be used to predict carriers of specific haplotypes. It is therefore convenient to have a practical statistical method for the accurate classification of individuals into carriers and non-carriers. In this paper, we present a procedure combining variable selection (i.e. the selection of predictive SNPs) and linear discriminant analysis for the identification of carriers of a haplotype on BTA19 (Bos taurus autosome 19) known to be associated with reduced cow fertility. A population of 3645 Brown Swiss cows and bulls genotyped with the 54K SNP-chip was available for the analysis.

Results

The overall error rate for the prediction of haplotype carriers was on average very low (∼≤1%). The error rate was found to depend on the number of SNPs in the model and their density around the region of the haplotype on BTA19. The minimum set of SNPs to still achieve accurate predictions was 5, with a total test error rate of 1.59.

Conclusions

The paper describes a procedure to accurately identify haplotype carriers from SNP genotypes in cattle populations. Very few misclassifications were observed, which indicates that this is a very reliable approach for potential applications in cattle breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号