首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genotoxicity of non-covalent interactions: DNA intercalators   总被引:1,自引:0,他引:1  
This review provides an update on the mutagenicity of intercalating chemicals, as carried out over the last 17 years. The most extensively studied DNA intercalating agents are acridine and its derivatives, that bind reversibly but non-covalently to DNA. These are frameshift mutagens, especially in bacteria and bacteriophage, but do not otherwise show a wide range of mutagenic properties. Di-acridines or di-quinolines may be either mono- or bis-intercalators, depending upon the length of the alkyl chain separating the chromophores. Those which monointercalate appear as either weak frameshift mutagens in bacteria, or as non-mutagens. However, some of the bisintercalators act as "petite" mutagens in Saccharomyces cerevisiae, suggesting that they may be more likely to target mitochondrial as compared with nuclear DNA. Some of the new methodologies for detecting intercalation suggest this may be a property of a wider range of chemicals than previously recognised. For example, quite a number of flavonoids appear to intercalate into DNA. However, their mutagenic properties may be dominated by the fact that many of them are also able to inhibit topoisomerase II enzymes, and this property implies that they will be potent recombinogens and clastogens. DNA intercalation may serve to position other, chemically reactive molecules, in specific ways on the DNA, leading to a distinctive (and wider) range of mutagenic properties, and possible carcinogenic potential.  相似文献   

2.
The simple reversible intercalating agents isopropyl-oxazolopyridocarbazole and 9-aminoacridine have been found to induce frameshift -1 mutations at a much lower level in Salmonella typhimurium delta uvrB TA 1537 than in the uvr+ wild type TA 1977 strain. This phenomenon can neither be explained by differential cytotoxicity of the drug nor by selective permeation and accessibility to intercalating sites to bacterial DNA. These finding indicate that the lower mutagenicity of intercalating agents in the delta uvrB strains does not result from nonspecific phenotypic modifications of parameters which control the mutagenesis. That leads to the hypothesis that in agreement with the Streisinger's model, the excision repair system could be directly involved in the appearance of frameshift mutations.  相似文献   

3.
The simple reversible intercalating agent isopropyl-OPC (iPr-OPC) induces frameshift-1 mutations in Salmonella typhimurium and Escherichia coli. The mutagenic responses of S. typhimurium and E. coli wild-type strains are not proportional to the amount of drug intercalated into double-stranded nucleic acids in living bacteria; it occurs only above a minimum level of binding. The fact that mismatch-repair-deficient (mutS) as well as adenine-methylation-deficient (dam) E. coli mutants are hypermutable at low concentrations of iPr-OPC suggests that the majority of mutants induced by this intercalating drug occur as mismatch-repairable mutations (or lesions) in the newly synthesized DNA strand close to the replication fork.  相似文献   

4.
One amebicide (chloroquine diphosphate) and 2 anthelmintic compounds (niclosamide and pyrvinium pamoate) were found to be mutagenic for Salmonella typhimurium TA1537, TA1538, TA100 and TA98 Uvr- strains respectively. Drugs tested on homologous Uvr+ strains (TA1977, TA1978, UTH8414 and UTH8413) showed decreased mutagenic activity of the compounds. This indicates that premutational damage induced by the drugs was totally or partially repaired. Furthermore, results obtained in the present study suggest that niclosamide and pyrvinium pamoate induce premutational lesions by adduct formation, and that chloroquine diphosphate, known as an intercalating agent, behaves as an adduct-forming compound as regards its effects on Uvr- and Uvr+ S. typhimurium strains.  相似文献   

5.
Derivatives of 4-nitrobiphenyl, 4-nitrosobiphenyl, 2-phenyl-5-nitropyridine (2-aza-4-nitrobiphenyl) and 2-nitrofluorene, bearing various alkyl substituents far away from the nitro group (4'-position in nitrobiphenyls, 7-position in 2-nitrofluorenes) were synthesised and tested for mutagenic potency in strains TA98 and TA100 of Salmonella typhimurium. In the absence of S9 in both strains, mutagenicity of all4'-Ad (Ad=adamantyl). Changes of the molecular shape from 'planar' to non-planar caused by the bulk of the introduced substituents (without influencing the twisting of the nitro substituent or the phenyl rings in the biphenyl compounds) may be responsible for this effect by interfering with an efficient intercalation into DNA.A comparison between experimental and theoretical values as calculated from recently developed equations (QSAR) confirmed our previous results (see the preceding paper) that mutagenicity of alkyl-substituted nitroaromatics cannot be predicted by hydrophobicity and LUMO-energies alone without including steric parameters.  相似文献   

6.
4'-(9-acridinylamino) methanesulfon-m-anisidide (amsacrine or AMSA), an antitumor drug which has been tested in clinical trials, is known to bind to DNA by the intercalation of its 9-amino acridine moiety between DNA base pairs. Like AMSA, a peptidic derivative of 4-(9-acridinylamino) aniline, 4-(9-acridinylamino)-N-(lysylglycyl) aniline (ALGA) binds to DNA by intercalation and its affinity for the target was found to be higher than the parent drug. The antitumor effect of AMSA and ALGA has been monitored by drug exposure assays on EMT 6 cells. AMSA showed a slightly higher cytotoxic activity. The cell cycle effects of both drugs were studied using flow cytofluorimetry; an accumulation of cells in the S phase followed by a cycle arrest in the G2 phase, characteristic of intercalating drugs, was observed.  相似文献   

7.
We measured the effect of the intercalating oxazole yellow DNA dye quinolinium,4-[(3-methyl-2(3H)-benzoxazolylidene)methyl]-1-[3-(trimethylammonio)propyl]-,diiodide (YO-PRO) and its homodimer (YOYO) on the melting of self-complementary DNA duplexes using a gel-based assay. The assay, which requires a self-complementary DNA sequence, is independent of the optical properties of the molecules in solution. The melting temperature of the DNA is observed to increase in direct proportion to the number of occupied intercalation sites on the DNA, irrespective of whether the dye molecules are in monomer or dimer form. The increase is approximately 2.5 degrees C for each intercalation site occupied in the presence of 38 mM [Na(+)], for dye/duplex ratios in which less than 1/5 of the available intercalation sites are occupied.  相似文献   

8.
Intercalating ligands may improve both the stability and sequence specificity of triple helices. Numerous intercalating drugs have been described, including coralyne, which preferentially binds triple helices, though its sequence specificity has been reported to be low [Lee,J.S., Latimer,L.J.P. and Hampel,K.J. (1993) Biochemistry , 32, 5591-5597]. In order to analyse the sequence preferences of coralyne we have used a combination of DNase I footprinting, UV melting, UV-visible spectrophotometry, circular dichroism and NMR spectroscopy to examine defined intermolecular triplexes and intramolecular triplexes linked either by hexaethylene glycol chains or by octandiol chains. DNase I footprinting demonstrated that coralyne has a moderate preference for triplexes over duplexes, but a substantial preference for TA.T triplets compared with CG. C+triplets. The drug was found to have essentially no effect on the melting temperatures of duplexes of the kind d(A)n.d(T)n or d(GA)n.d(TC)n. In contrast, it increased the T m for triplexes of the kind d(T)nd(A)n.dTn, but had little effect on the stability of d(TC)nd(GA).d(CT)n at either low or high pH. On binding to DNA triplexes, there is a large change in the absorption spectrum of coralyne and also a substantial fluorescence quenching that can be attributed to intercalation. The changes in the optical spectra have been used for direct titration with DNA. For triplexes d(T)6d(A)6.d(T)6, the Kd at 298 K was 0.5-0.8 microM. In contrast, the affinity for d(TC) nd(GA)n.d(CT)n triplexes was 6- to 10-fold lower and was characterized by smaller changes in the absorption and CD spectra. This indicates a preference for intercalation between TAT triples over CG.C+/TA.T triples. NMR studies confirmed interaction by intercalation. However, a single, secondary binding was observed at high concentrations of ligand to the triplex d(AGAAGA-L-TCTTCT-L-TCTTCT), presumably owing to the relatively low difference in affinity between the TA.T site and the competing, neighbouring sites.  相似文献   

9.
Abstract

The drugs Hoechst 33258, berenil and DAPI bind preferentially to the minor groove of AT sequences in DNA Despite a strong selectivity for AT sites, they can interact with GC sequences by a mechanism which remains so far controversial. The 2-amino group of guanosine represents a steric hindrance to the entry of the drugs in the minor groove of GC sequences. Intercalation and major groove binding to GC sites of GC-rich DNA and polynucleotides have been proposed for these drugs. To investigate further the mode of binding of Hoechst 33258, berenil and DAPI to GC sequences, we studied by electric linear dichroism the mutual interference in the DNA binding reaction between these compounds and a classical intercalator, proflavine, or a DNA-threading intercalating drug, the amsacrine-4-carboxamide derivative SN16713. The results of the competition experiments show that the two acridine intercalators markedly affect the binding of Hoechst 33258, berenil and DAPI to GC polynucleotides but not to DNA containing AT/GC mixed sequences such as calf thymus DNA Proflavine and SN16713 exert dissimilar effects on the binding of Hoechst 33258, berenil and DAPI to GC sites. The structural changes in DNA induced upon intercalation of the acridine drugs into GC sites are not identically perceived by the test compounds. The electric linear dichroism data support the hypothesis that Hoechst 33258, berenil and DAPI interact with GC sites via a non-classical intercalation process.  相似文献   

10.
The binding of the intercalating dye methylene blue (MB) to chromatin and to free DNA has been studied as a function of ionic strength at very low binding ratios (1 MB/400 DNA bases) using absorption spectroscopy. With increasing salt concentration MB is displaced from chromatin to a higher extent than from DNA. The free energy change for MB binding to chromatin is found to be approximately 5 kJ/mole lower than for binding to DNA. This difference can be explained by the reduced number of high affinity binding sites in chromatin due to the presence of histone proteins. The difference in binding energy is virtually independent of the degree of chromatin condensation and also of the valence of counter ions, suggesting that neither the affinity for, nor the number of intercalation sites in the linker DNA is markedly changed upon the salt-induced condensation. The unaffected thermodynamics of the linker binding suggests that factors such as DNA superhelicity and the electrostatic influence from the chromatosomes remain unchanged during chromatin condensation.  相似文献   

11.
The mutagenic activity of Flunitrazepam, the active ingredient of the drug Rohypnol, has been investigated by using the Salmonella/microsome mutagenicity test. A dose-related mutagenic effect was observed on Salmonella typhimurium strain TA 100 either in the absence or in the presence of a rat liver microsomal fraction (S9) as in vitro metabolic activation system. By adopting a modification of the Salmonella test, the mutagenicity of urines from rats or patients treated with the drug was evaluated. In these cases mutagenic activity was detected toward the Salmonella strains TA 98 and TA 100 both in presence and in absence of the metabolic activation system. The data indicate that Flunitrazepam and/or its urinary metabolites can induce both base-pair substitutions or frame-shift point mutations.  相似文献   

12.
Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components.  相似文献   

13.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The frameshift mutagenicity of the DNA intercalating drug proflavine is known to be enhanced by photoirradiation of bacterial cultures. To determine whether this phenomenon was also present in acridine-derived antitumour drugs, cultures of Salmonella typhimurium were exposed to the antileukaemia agent amsacrine and the experimental agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide dihydrochloride (acridine carboxamide) in the presence or absence of visible light. A small increase in mutagenicity was observed with amsacrine but not with acridine carboxamide. A series of analogues of amsacrine were then tested, and a striking relationship was found between the minimum drug concentration for mutagenicity and DNA binding affinity. In each case, photoirradiation was associated with a small increase in mutagenicity. Each of the compounds showing the photo-enhancement effect was capable of reversible one-electron oxidation. It is suggested that this oxidation occurs in bacteria, and that the DNA binding constant of the resulting acridine radical species will increase because of the extra positive charge. This increased DNA binding would be sufficient to explain the photo-enhancement of mutagenicity of these drugs.  相似文献   

15.
Cryptolepine, a naturally occurring indoloquinoline alkaloid used as an antimalarial drug in Central and Western Africa, has been found to bind to DNA in a formerly unknown intercalation mode. Evidence from competition dialysis assays demonstrates that cryptolepine is able to bind CG-rich sequences containing nonalternating CC sites. Here we show that cryptolepine interacts with the CC sites of the DNA fragment d(CCTAGG)(2) in a base-stacking intercalation mode. This is the first DNA intercalator complex, from approximately 90 solved by X-ray crystallography, to bind a nonalternating (pyrimidine-pyrimidine) DNA sequence. The asymmetry of the drug induces a perfect stacking with the asymmetric site, allowing for the stability of the complex in the absence of hydrogen bonding interactions. The crystal structure of this antimalarial drug-DNA complex provides evidence for the first nonalternating intercalation and, as such, provides a basis for the design of new anticancer or antimalarial drugs.  相似文献   

16.
17.
Halonitromethanes (HNMs) are a recently identified class of disinfection by-products (DBPs) in drinking water. They include chloronitromethane (CHN), dichloronitromethane (DCNM), trichloronitromethane (TCNM), bromonitromethane (BNM), dibromonitromethane (DBNM), tribromonitromethane (TBNM), bromochloronitromethane (BCNM),dibromochloronitromethane (DBCNM), and bromodichloronitromethane (BDCNM). Previous studies of TCNM, DCNM, CNM, and TBNM found that all four were mutagenic in bacteria, and a recent study showed that all nine induced DNA damage in CHO cells. Here, all nine HNMs were evaluated in the Salmonella plate-incorporation assay +/- S9 using strains TA98, TA100, TA104, TPT100, and the glutathione transferase theta (GSTT1-1)-expressing strain RSJ100. All were mutagenic, most with and without S9. In the absence of S9, six were mutagenic in TA98, six in TA100, and three in TA104; in the presence of S9, these numbers were five, seven, and three, respectively. Thus, the HNMs-induced base substitutions primarily at GC sites as well as frameshifts. Although five HNMs were activated to mutagens in RSJ100 -S9, they produced < or =2-fold increases in revertants and potencies <506 rev/micromol. The rank order of the HNMs by mutagenic potency in TA100 +S9 was (BCNM DBNM) > (TBNM CNM > BNM DCNM BDCNM) > (TCNM = DBCNM). The mean rev/micromol for the three groupings, respectively, were 1423, 498, and 0, which classifies the HNMs as weak mutagens in Salmonella. Reaction of the dihalo and monohalo HNMs with GSH, possibly GSTT1-1, is a possible mechanism for formation of ultimate mutagenic products. Because the HNMs are mutagenic in Salmonella (present study) and potent clastogens in mammalian cells [Environ. Sci. Technol. 38 (2004) 62], their presence in drinking water warrants further research on their potential health effects.  相似文献   

18.
Programmed cell death (PCD) in bacteria In bacteria, cell death occurs under certain stressful conditions, and this process has been designated as programmed cell death (PCD). The biological basis of the PCD are two molecules, a stable toxin protein and an unstable antitoxin being either a short RNA molecule or a protein. The antitoxin has to be synthesized permanently to neutralize the toxin. Both components form a TA module. When the synthesis of the antitoxin is blocked or when it is degraded completely, the free toxin acts either bacteriostatic or bactericide. So far, five different mechanisms have been described of how the antitoxin neutralizes the toxin in the absence of stress. Sporulating Bacillus subtilis cells exert cannibalism that means they kill and lyse non‐sporulating cells to take up their nutrients. Streptococcus pneumoniae cells can carry out fratricide. They kill and lyse neighbouring cells, take up fragments of their chromosomal DNA and recombine them with their own DNA. This can result in the uptake of new genes. At the end, two examples of application of TA modules in biotechnology are described.  相似文献   

19.
Seven naturally occurring furoquinoline alkaloids were investigated for their photobiological activity using arg-1 cells of Chlamydomonas reinhardtii. UV-A-mediated toxicity of the compounds was calculated from the colony-forming ability of the treated cells. The UV-A-mediated mutagenicity was measured by counting the number of Arg+ revertants induced by the treatment. Dictamnine was found to be the strongest mutagen as well as the most toxic compound of the group. The mutagenic activities were measured as mutation frequencies at equal substance concentration and ranked in the following order: An increase in the number of substituents on the lateral aromatic nucleus greatly decreased the photomutagenicity. Except for evolitrine, a similar ranking order was found as reported for the dark mutagenicity of these compounds in Salmonella typhimurium strain TA98. Based on the result that furoquinolines are able to intercalate into DNA, we assume that the different mutagenic potencies may reflect differences in the geometry of the intercalation complex, which is important for the subsequent photochemical reaction.  相似文献   

20.
The mutagenic behaviour of two potentially carcinogenic mycotoxins produced byFusarium moniliforme was investigated in theSalmonella mutagenicity test using tester strains TA97a, TA98, TA100, and TA102. The mutagenic response obtained with fusarin C (1, 5, and 10μg/plate) against tester strains TA98 and TA100 in the presence of microsomal activation confirmed previous observations on the mutagenic behaviour of this mutagen while that obtained against TA97a is reported for the first time. No dose-response relationship could be detected for the concentration levels (0.2, 0.5, 1, 5, 10 mg/plate) tested for FB1, FB2, and FB3 against any of the tester strains used in either the plate incorporation and / or the pre-incubation tests. A cytotoxic effect was obtained at concentration levels of 5 and 10mg/plate in the absence of the microsomal activation mixture. From the studies it became evident thatF moniliforme produces two compounds, a mutagenic compound, fusarin C which has been shown to lack carcinogenic activity in rats and the non-mutagenic fumonisin B mycotoxins of which FB1 is known to be responsible for the hepatocarcinogenicity of the fungus in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号