首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The human recombination activating gene 1 (RAG1) has previously been mapped to chromosomes 14q and 11p. Here we confirm the chromosome 11 assignment by two independent approaches: autoradiographic and fluorescence in situ hybridization to metaphase spreads and analysis of human-hamster somatic cell hybrid DNA by the polymerase chain reaction (PCR) and Southern blotting. Our results unequivocally localize RAG1 to 11p13.  相似文献   

2.
3.
Homologous clones that encode the beta chain of the T cell antigen receptor have been isolated recently from both murine and human cDNA libraries. These cDNA clones have been used in connection with interspecies hybrid cell lines to determine that the murine T cell receptor gene is located on chromosome 6 and the human gene on chromosome 7. In situ hybridization confirms these data and further localizes these genes to band B of chromosome 6 in the mouse and bands 7p13-21 in the human genome. The organization of the T cell antigen receptor J beta gene segments and C beta genes appears to be conserved, since very few intraspecies polymorphisms of restriction fragment length have been detected in either mouse or human DNA.  相似文献   

4.
5.
The chromosomal locations of the human and murine T11 (CD2) gene have been determined. Using recently cloned cDNA to probe Southern blots of mouse X human and Chinese hamster X mouse somatic cell hybrids, we have localized the human T11 gene to chromosome 1 and the murine T11 gene to chromosome 3. Based on previously determined blocks of homology between human chromosome 1 and mouse chromosome 3, it is suggested that the human T11 gene may lie on the short arm of chromosome 1 proximal to p221. Thus, the T11 gene is not linked to any other genes for T cell markers that have been mapped to date.  相似文献   

6.
7.
An essential step in the development of the vertebrate immune system is the DNA level rearrangement of the antigen receptor genes. This process, termed "V(D)J recombination," begins with DNA cleavage at the appropriate sites mediated by the two proteins RAG1 and RAG2. We report here that the two proteins cooperate to bind DNA with significantly higher specificity than either protein alone. Gel purification of the triple complex is performed in the absence of any cross-linking agents. Both proteins remain present in the complex, and UV cross-linking using iodouridine-containing probes shows that RAG1 makes close contacts in both the heptamer and nonamer motifs. The two proteins are also shown to associate with each other in the absence of any DNA. These findings refine our understanding of the protein-DNA interactions that accompany cleavage at the recombination signals.  相似文献   

8.
In experimental B-cell infections, Epstein-Barr virus induced sustained expression of V(D)J recombinase-activating genes RAG1 and RAG2, whose aberrant activity has been implicated in chromosomal translocations in B-cell neoplasms. In cell lines in which RAG1 and RAG2 were detected, virus integrated into cellular DNA rather than assumed the configuration of extrachromosomal episomes. Expression of the Epstein-Barr virus nuclear antigen 1 in transient transfection assays was sufficient to induce both recombinase-activating genes.  相似文献   

9.
Each olfactory sensory neuron (OSN) expresses a single odorant receptor (OR) from a large repertoire of clustered OR genes. It has been hypothesized that OR gene regulation may involve stochastic DNA rearrangement, which in lymphocytes requires the recombination activating genes, rag1 and rag2. We have recently demonstrated that rag1 is expressed in zebrafish OSNs. Here we report that rag2, the obligate partner for rag1 function, is also expressed in OSNs and that its expression pattern mimics that of rag1. The onset of rag1 and rag2 expression preceded that of known zebrafish ORs and the number of rag1-positive OSNs corresponded with the number expressing the olfactory cyclic nucleotide-gated cation channel, an OSN marker. Zebrafish OSNs are the first example of concurrent rag expression in a nonlymphoid tissue. The expression of rag1 and rag2 in OSNs adds to the list of similarities between the olfactory and immune systems that includes monoallelic and mutually exclusive gene expression.  相似文献   

10.
The characterization of genes involved in the generation of the immune repertoire is an active area of research in lower vertebrate taxa. The recombination activating genes (RAG) have been shown to be essential for V (D) J recombination of T-cell antigen receptor (TCR) and immunoglobulin (Ig) genes, leading to the generation of the primary repertoire. As RAG1 is critical to the differentiation of pre-B and-T cells, its expression within an associated primary lymphoid organ can serve as a developmental marker. To examine the ontogeny of lymphocytes in Oncorhynchus mykiss, we cloned RAG1 from trout and examined its tissue-and lymphocyte-specific expression. The polymerase chain reaction, coupled with degenerate oligonucleotide primers, was used to amplify a homologous probe [(633 base pairs) (bp)] from rainbow trout genomic DNA, which in turn was used to isolate a lambda genomic clone. Sequence analysis of this genomic clone confirmed the RAG1 nature of this gene (3888 bp) and revealed an internal intron of 666 bp. When compared with other previously reported RAG1 sequences, the predicted amino acid translation (1073 aa) displayed a minimum of 78% similarity for the complete sequence and 89% similarity in the conserved region (aa 417-1042). Using northern blot analysis, we found the expression of RAG1 to be limited to surface Ig-n lymphocytes within the thymus. This data forms the basis for a proposal that the thymus of teleost species plays an essential developmental role in lymphopoiesis and thus can be regarded as a primary lymphoid organ.  相似文献   

11.
12.
13.
14.
15.
16.
It has been speculated that autoimmune diseases are caused by failure of central tolerance. However, this remains controversial. We have suggested that CD40 expression identifies autoaggressive T cells in the periphery of autoimmune prone mice. In this study, we report that CD40 was cloned from autoaggressive T cells and that engagement induces expression and nuclear translocation of the recombinases, recombination activating gene (RAG) 1 and RAG2 in the autoaggressive, but not in the nonautoaggressive, peripheral T cell population. Furthermore, we demonstrate that CD40 engagement induces altered TCR Valpha, but not Vbeta, expression in these cells. Therefore, CD40-regulated expression of RAG1 and RAG2 in peripheral T cells may constitute a novel pathway for the generation of autoaggressive T cells.  相似文献   

17.
 The closely linked recombination activating genes, rag1 and rag2, encode components of the recombinase involved in V(D)J recombination of the immunoglobulin and T-cell receptor genes. These genes are expressed together exclusively in immature lymphocytes and are useful markers for following the development of lymphoid tissues. We cloned the rag locus of the zebrafish Danio rerio and sequenced the open reading frames of the rag1 and rag2 genes. Although the gene organization is similar to that in other species, the rag1 gene is unusual in possessing two introns within the coding region. In another teleost, the rainbow trout, the rag1 gene is interrupted by a single intron. Introns are not present in the rag1 gene of any other species examined to date. Expression of both rag1 and rag2 begins late in embryonic development, on day 4, by northern RNA blot analysis. Expression of rag1 was detected in the adult zebrafish thymus, pronephros, mesonephros, and ovary. This pattern of expression is consistent with previous histological studies of adult teleosts, which implicate the kidney as the major site of hematopoiesis and the thymus as the major lymphocyte-containing organ. Received: 16 October 1996 / Revised: 28 November 1996  相似文献   

18.
Dong M  Fu Y  Yu C  Su J  Huang S  Wu X  Wei J  Yuan S  Shen Y  Xu A 《Fish & shellfish immunology》2005,19(2):165-174
Expression of recombination activating genes (RAG) involved in the V (D) J recombination is regulated by the RAG1 gene activator (RGA) in mammals. The sequence of a cDNA clone from an amphioxus cDNA library was found to be homologous to that of RGA from mouse stromal cells with 45% identity. The full-length cDNA sequence comprises 1119 bp and encodes a putative protein of 210 amino acid residues. Characterisation of the amino acid sequence revealed that two MtN3 domains and seven transmembrane spans are present in this protein, indicating a potential role as a plasma membrane protein. This gene is expressed in many tissues and at differential developmental stages. A high expression level of RGA is detected in gonad tissues, and gastrula embryo and adult stages. The presence of the RGA gene in amphioxus suggests that the signal pathway required for the expression of RAG could exist in this primitive protochordate. It also implies that in the related molecules, primitive adaptive immunity may have existed in cephalochordate although the complete machinery of VDJ rearrangement may not be formed.  相似文献   

19.
20.
Apolipoprotein (apo) A-I is a major protein of high density lipoproteins (HDL). The gene for apoA-I has been localized to the p11 leads to q13 region of chromosome 11 by filter hybridization analysis of mouse-human hybrid cell cDNAs containing chromosome 11 translocations utilizing a cloned human apoA-I cDNA probe. The known linkage of apoA-I and apoC-III also permitted the simultaneous assignment of the apoC-III gene to the same region on chromosome 11. Comparison with previously established gene linkages on the mouse and human genome suggests that apoA-I + apoC-III may be linked to the esterase A4 and uroporphyrinogen synthase genes which are present on the long arm of human chromosome 11. The localization of the apoA-I + apoC-III genes in the p11----q13 region of chromosome 11 represents a definitive chromosomal assignment of a human apolipoprotein gene, and will now enable more detailed analysis of the geneomic organization and linkages of the apolipoprotein genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号