首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
《The Journal of cell biology》1996,134(5):1157-1168
RanBP1 is a Ran/TC4 binding protein that can promote the interaction between Ran and beta-importin /beta-karyopherin, a component of the docking complex for nuclear protein cargo. This interaction occurs through a Ran binding domain (RBD). Here we show that RanBP1 is primarily cytoplasmic, but the isolated RBD accumulates in the nucleus. A region COOH-terminal to the RBD is responsible for this cytoplasmic localization. This domain acts heterologously, localizing a nuclear cyclin B1 mutant to the cytoplasm. The domain contains a nuclear export signal that is necessary but not sufficient for the nuclear export of a functional RBD In transiently transfected cells, epitope-tagged RanBP1 promotes dexamethasone-dependent nuclear accumulation of a glucocorticoid receptor-green fluorescent protein fusion, but the isolated RBD potently inhibits this accumulation. The cytosolic location of RanBP1 may therefore be important for nuclear protein import. RanBP1 may provide a key link between the nuclear import and export pathways.  相似文献   

4.
5.
The EICP22 protein (EICP22P) of Equine herpesvirus 1 (EHV-1) is an early protein that functions synergistically with other EHV-1 regulatory proteins to transactivate the expression of early and late viral genes. We have previously identified EICP22P as an accessory regulatory protein that has the ability to enhance the transactivating properties and the sequence-specific DNA-binding activity of the EHV-1 immediate-early protein (IEP). In the present study, we identify EICP22P as a self-associating protein able to form dimers and higher-order complexes during infection. Studies with the yeast two-hybrid system also indicate that physical interactions occur between EICP22P and IEP and that EICP22P self-aggregates. Results from in vitro and in vivo coimmunoprecipitation experiments and glutathione S-transferase (GST) pull-down studies confirmed a direct protein-protein interaction between EICP22P and IEP as well as self-interactions of EICP22P. Analyses of infected cells by laser-scanning confocal microscopy with antibodies specific for IEP and EICP22P revealed that these viral regulatory proteins colocalize in the nucleus at early times postinfection and form aggregates of dense nuclear structures within the nucleoplasm. Mutational analyses with a battery of EICP22P deletion mutants in both yeast two-hybrid and GST pull-down experiments implicated amino acids between positions 124 and 143 as the critical domain mediating the EICP22P self-interactions. Additional in vitro protein-binding assays with a library of GST-EICP22P deletion mutants identified amino acids mapping within region 2 (amino acids [aa] 65 to 196) and region 3 (aa 197 to 268) of EICP22P as residues that mediate its interaction with IEP.  相似文献   

6.
7.
The polypyrimidine tract-binding protein (PTB) is a nuclear protein that regulates alternative splicing. In addition, it plays a role in the cytoplasm during infection by some viruses and functions as a positive effector of hepatitis B virus RNA export. Thus, it presumably contains a nuclear export signal (NES). Using a heterokaryon export assay in transfected cultured cells, we have shown that the N-terminal 25 amino acid residues of PTB function as an autonomous NES, with residues 11-16 being important for its activity. Unlike the heteronuclear ribonucleoprotein A1 NES, this NES is separable from the nuclear localization signal, which spans the entire N-terminal 60 residues of PTB. The PTB NES cannot be shown to bind to CAS or Crm1, cellular receptors known to export proteins from the nucleus, and it functions in the presence of leptomycin B, a specific inhibitor of Crm1-dependent export. PTB deleted of its NES, unlike wild type PTB, does not stimulate the export of hepatitis B virus RNA. Therefore, the PTB NES is a functionally important domain of this multifunctional protein that utilizes an unknown export receptor.  相似文献   

8.
Trax (Translin-associated factor X) has been shown to interact with TB-RBP/Translin by its coimmunoprecipitation and in yeast two-hybrid assays. Here we demonstrate that Trax is widely expressed, does not bind to DNA or RNA, but forms heterodimers with TB-RBP under reducing conditions. The heterodimer of TB-RBP and Trax inhibits TB-RBP binding to RNA, but enhances TB-RBP binding to specific single stranded DNA sequences. The in vitro interactions between TB-RBP and Trax are confirmed by similar interactions in the yeast two-hybrid system. Cell fractionation and confocal microscope studies reveal that Trax is predominantly cytoplasmic. In contrast, TB-RBP is present in both the nuclei and cytoplasm of transfected cells and uses a highly conserved nuclear export signal to exit nuclei. In addition to a leucine zipper, two basic domains in TB-RBP are essential for RNA binding, but only one of these domains is needed for DNA binding. Trax restores DNA binding to TB-RBP containing an altered form of this domain. These data suggest that Trax-TB.RBP interactions modulate the DNA- and RNA-binding activity of TB-RBP.  相似文献   

9.
The protein Gle1 is required for export of mRNAs from the nucleus to the cytoplasm in both lower and higher eukaryotic cells. In human (h) cells, shuttling of hGle1 between the nucleus and cytoplasm is essential for bulk mRNA export. To date, no hGle1-interacting proteins have been reported and the mechanism by which hGle1 interacts with the nuclear pore complex (NPC) and mediates export is unknown. To identify proteins that can interact with hGle1, a genome-wide yeast two-hybrid screen was performed. Three potential hGle1-interacting partners were isolated, including clones encoding the C-terminal region of the NPC protein hNup155. This interaction between hGle1 and full-length hNup155 was confirmed in vitro, and deletion analysis identified the N-terminal 29 residues of hGle1 as the hNup155-binding domain. Experiments in HeLa cells confirmed that the nuclear rim localization of the major hGle1 protein variant (hGle1B) was dependent on the presence of these 29 N-terminal residues. This suggests that this domain of hGle1 is necessary for targeting to the NPC. This work also characterizes the first domain in hNup155, a 177 C-terminal amino acid span that binds to hGle1. The mutual interaction between hGle1 and the symmetrically distributed nuclear pore protein Nup155 suggests a model in which hGle1's association with hNup155 may represent a step in the Gle1-mediated mRNA export pathway.  相似文献   

10.
The nucleocapsid (N) protein of infectious bronchitis virus (IBV) localizes to the cytoplasm and nucleolus and contains an eight-amino-acid nucleolar retention motif. In this study, a leucine-rich nuclear export signal (NES) (291-LQLDGLHL-298) present in the C-terminal region of the IBV N protein was analyzed by using alanine substitution and deletion mutagenesis to investigate the relative contributions that leucine residues make to nuclear export and where these residues are located on the structure of the IBV N protein. The analysis indicated that Leu296 and Leu298 are required for efficient nuclear export of the protein. Structural information indicated that both of these amino acids are available for interaction with protein complexes involved in this process. However, export of N protein from the nucleus/nucleolus was not inhibited by leptomycin B treatment, indicating that N protein nuclear export is independent of the CRM1-mediated export pathway.  相似文献   

11.
Yoo D  Wootton SK  Li G  Song C  Rowland RR 《Journal of virology》2003,77(22):12173-12183
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.  相似文献   

12.
The N-terminus of regulator of G protein signaling 7 (RGS7) contains a dishevelled/egl-10/pleckstrin (DEP) domain of unknown function. To gain insight into its function, we used yeast two-hybrid analysis to screen a human whole brain cDNA library in order to identify proteins that interact specifically with the N-terminus of human RGS7 (amino acid residues 1-248). From this analysis, we identified snapin, a protein associated with the SNARE complex in neurons, as an interactor with the N-terminus of RGS7. Deletion mutation analysis in yeast demonstrated that the interaction between RGS7 and snapin is specific and is mediated primarily by amino acid residues 1-69 of RGS7 (which contains the proximal portion of the DEP domain). The interaction between RGS7 and snapin was also demonstrated in mammalian cells by coimmunoprecipitation and pull-down assays. Our results suggest that RGS7 could play a role in synaptic vesicle exocytosis through its interaction with snapin.  相似文献   

13.
14.
The xeroderma pigmentosum group A protein (XPA) plays a central role in nucleotide excision repair (NER). To identify proteins that bind to XPA, we screened a HeLa cDNA library using the yeast two-hybrid system. Here we report a novel cytoplasmic GTP-binding protein, designated XPA binding protein 1 (XAB1). The deduced amino acid sequence of XAB1 consisted of 374 residues with a molecular weight of 41 kDa and an isoelectric point of 4.65. Sequence analysis revealed that XAB1 has four sequence motifs G1–G4 of the GTP-binding protein family in the N-terminal half. XAB1 also contains an acidic region in the C-terminal portion. Northern blot analysis showed that XAB1 mRNA is expressed ubiquitously, and immunofluorescence analysis revealed that XAB1 is localized mainly in the cytoplasm. Consistent with the GTP-binding motif, purified recombinant XAB1 protein has intrinsic GTPase activity. Using the yeast two-hybrid system, we elucidated that XAB1 binds to the N-terminal region of XPA. The deletion of five amino acids, residues 30–34 of XPA, required for nuclear localization of XPA abolished the interaction with XAB1. These results suggest that XAB1 is a novel cytoplasmic GTPase involved in nuclear localization of XPA.  相似文献   

15.
In eukaryotes, the nuclear export of mRNA is mediated by nuclear export factor 1 (NXF1) receptors. Metazoans encode additional NXF1-related proteins of unknown function, which share homology and domain organization with NXF1. Some mammalian NXF1-related genes are expressed preferentially in the brain and are thought to participate in neuronal mRNA metabolism. To address the roles of NXF1-related factors, we studied the two mouse NXF1 homologues, mNXF2 and mNXF7. In neuronal cells, mNXF2, but not mNXF7, exhibited mRNA export activity similar to that of Tip-associated protein/NXF1. Surprisingly, mNXF7 incorporated into mobile particles in the neurites that contained poly(A) and ribosomal RNA and colocalized with Staufen1-containing transport granules, indicating a role in neuronal mRNA trafficking. Yeast two-hybrid interaction, coimmunoprecipitation, and in vitro binding studies showed that NXF proteins bound to brain-specific microtubule-associated proteins (MAP) such as MAP1B and the WD repeat protein Unrip. Both in vitro and in vivo, MAP1B also bound to NXF export cofactor U2AF as well as to Staufen1 and Unrip. These findings revealed a network of interactions likely coupling the export and cytoplasmic trafficking of mRNA. We propose a model in which MAP1B tethers the NXF-associated mRNA to microtubules and facilitates their translocation along dendrites while Unrip provides a scaffold for the assembly of these transport intermediates.  相似文献   

16.
Di Y  Li J  Zhang Y  He X  Lu H  Xu D  Ling J  Huo K  Wan D  Li YY  Gu J 《Journal of biochemistry》2003,133(6):713-718
The gene HCAP1 (HCC-associated Protein 1), one variant of GEMIN4, has been mapped in a minimum LOH region on chromosome 17p13.3 and encodes a 1047-amino acid protein. Function predictions based on the amino acid sequence of protein HCAP1 revealed it to contain one helix-loop-helix motif and one leucine zipper domain. Using yeast two-hybrid screening, five zinc-finger proteins were identified as HCAP1-interacting proteins. Among them, NDP52 (nuclear dot protein 52) appeared most frequently in positive clones and was the most strongly interacting protein. Then, the interaction between HCAP1 and NDP52 was confirmed by GST pull-down assay and a coimmunoprecipitation experiment. Moreover, an immunofluorescent staining assay indicated that NDP52 colocalizes with HCAP1 in the cytoplasm. By deletion analysis, the leucine zipper domain of HCAP1 and the zinc finger domain of NDP52 were identified as important regions responsible for the interaction.  相似文献   

17.
Pinin is a cell adhesion-associated and nuclear protein that has been shown to localize in the vicinity of intermediate filament (IF) convergence upon the cytoplasmic face of the desmosomal plaque as well as in the nucleus. The localization of pinin to the desmosomes has been correlated with the reinforcement of intercellular adhesion and increased IF organization. In this study, keratins 18, 8, and 19 were identified to interact with the amino end domain of pinin in a two-hybrid screening. Further truncation analyses indicated that the 2B domain of keratin contains the sequence responsible for interacting with pinin. The amino end of pinin (residues 1-98) is sufficient to bind to keratin. Point mutation analyses revealed two essential residues within the pinin fragment 1-98, leucine 8 and leucine 19, for the interaction with keratin. Finally, in vitro protein overlay binding assays confirmed the direct interaction of the amino end domain of pinin with keratins, while pinin mutant L8P GST fusion protein failed to bind to keratins in the overlay assay. Coupled with our previous morphological observations and transfection studies, these data suggest that pinin may play a role in epithelial cell adhesion and the IF complex through a direct interaction with the keratin filaments.  相似文献   

18.
19.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease worldwide. HCV core protein is involved in nucleocapsid formation, but it also interacts with multiple cytoplasmic and nuclear molecules and plays a crucial role in the development of liver disease and hepatocarcinogenesis. The core protein is found mostly in the cytoplasm during HCV infection, but also in the nucleus in patients with hepatocarcinoma and in core-transgenic mice. HCV core contains nuclear localization signals (NLS), but no nuclear export signal (NES) has yet been identified.We show here that the aa(109-133) region directs the translocation of core from the nucleus to the cytoplasm by the CRM-1-mediated nuclear export pathway. Mutagenesis of the three hydrophobic residues (L119, I123 and L126) in the identified NES or in the sequence encoding the mature core aa(1-173) significantly enhanced the nuclear localisation of the corresponding proteins in transfected Huh7 cells. Both the NES and the adjacent hydrophobic sequence in domain II of core were required to maintain the core protein or its fragments in the cytoplasmic compartment. Electron microscopy studies of the JFH1 replication model demonstrated that core was translocated into the nucleus a few minutes after the virus entered the cell. The blockade of nucleocytoplasmic export by leptomycin B treatment early in infection led to the detection of core protein in the nucleus by confocal microscopy and coincided with a decrease in virus replication.Our data suggest that the functional NLS and NES direct HCV core protein shuttling between the cytoplasmic and nuclear compartments, with at least some core protein transported to the nucleus. These new properties of HCV core may be essential for virus multiplication and interaction with nuclear molecules, influence cell signaling and the pathogenesis of HCV infection.  相似文献   

20.
GW182 family proteins play important roles in microRNA (miRNA)-mediated RNA silencing. They directly interact with Argonaute (Ago) proteins in processing bodies (P bodies), cytoplasmic foci involved in mRNA degradation and storage. Recently, we revealed that a human GW182 family protein, TNRC6A, is a nuclear-cytoplasmic shuttling protein, and its subcellular localization is regulated by its own nuclear localization signal and nuclear export signal. Regarding the further controlling mechanism of TNRC6A subcellular localization, we found that TNRC6A protein is tethered in P bodies by direct interaction with Ago2 under Ago2 overexpression condition in HeLa cells. Furthermore, it was revealed that such Ago proteins might be strongly tethered in the P bodies through Ago-bound small RNAs. Thus, our results indicate that TNRC6A subcellular localization is substantially controlled by the interaction with Ago proteins. Furthermore, it was also revealed that the TNRC6A subcellular localization affects the RNA silencing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号