首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Most folding studies on proteins and nucleic acids have been addressed to the transition between the folded and unfolded states of an intact molecule, where an entire residue sequence is present during the folding event. However, since these polymers are synthesized sequentially from one terminus to the other in vivo, their folding pathways may be influenced greatly by the sequential appearance of the residues as a function of time.The three-dimensional structure of yeast tRNAPhe in the crystalline state is correlated with 360 MHz proton nuclear magnetic resonances from three fragments plus an intact molecule of the tRNA that share a common 5′ end and are in a solution condition similar to that of the crystal structure. This has allowed identification of folded structures present in the fragments and presumably present in the growing tRNA molecule as it is being synthesized from the 5′ end. The experiments show that only the correct stems are formed in the fragments; no additional or competing helical region is produced. This suggests that in the biosynthesis of this tRNA, correct folding of helical stems occurs before the entire molecule is formed. Further, some of the tertiary interactions (hydrogen bonds) found in the crystal structure are also probably present before the synthesis is completed. These findings are generalized to consider the precursor of the tRNA as well as other tRNAs.  相似文献   

3.
Cytochrome oxidase from Pseudomonas aeruginosa has been crystallized from 2 m-ammonium sulfate. The crystals occur principally as thin diamond-shaped plates of space group P21212 with unit cell dimensions of 92 Å × 115 Å × 76 Å. Determination of the density of glutaraldehyde-fixed, water-equilibrated crystals (1.167 g/cm3), coupled with the unit cell volume (804,000 Å3), indicates that there is one subunit (~63,000 Mr) per asymmetric unit. X-ray diffraction data which were limited to 12 Å resolution due to small crystal size were obtained for the hk0 and 0kl zones using precession photography. Amplitude and phase data for the hk0, 0kl, and h0l zones were obtained from computer-based Fourier analysis of appropriate micrographs recorded from negatively stained microplates and thin sections of larger crystals using minimal beam electron microscopy. For crystals embedded in the presence of tannic acid it was possible to achieve 20 Å resolution which is comparable to the resolution achieved with negative staining of thin crystalline arrays. In addition, unstained electron diffraction on glutaraldehyde-fixed, glucose-stabilized plates was recorded to a resolution of 9 Å. The three-dimensional packing of the cytochrome oxidase dimer in the unit cell has been deduced from computer reconstructed images of the three principal projections along the crystallographic axes. The cytochrome oxidase dimer is located in the unit cell with the dimer axis coincident with a crystallographic 2-fold axis; thus within the resolution of the present data in projection (9 Å) the two subunits are identical, in agreement with biochemical evidence. The crystals have been prepared with the enzyme in the fully oxidized state and upon reduction a progressive cracking of the crystals is observed, possibly due to a conformational change dependent on the oxidation state of the heme iron.  相似文献   

4.
Relaxation times and integrated intensities have been obtained from dipolar decoupled 13C magnetic resonance spectra of reconstituted fibrils of chick calvaria collagen enriched at the glycine Ca and C′ positions. The data obtained are consistent with a model in which collagen molecules reorient about the long axis of the helix with a rotational diffusion constant (R1) of ~107 s?1, a value similar to that expected for the helix in solution. Data obtained from natural abundance 13C spectra of native (crosslinked) calf achilles tendon and rat tail tendon provide evidence of rapid anisotropic reorientation for at least 75% of the carbons in these tissues. Hence, our preliminary data indicate that, in these materials, the intermolecular interactions in the fibrilar collagen lattice can accommodate rapid reorientation at a majority of carbon sites.  相似文献   

5.
6.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   

7.
Efficient lysogenization of Escherichia coli K12 by bacteriophage λ requires the high level of synthesis of the phage repressor shortly after infection. This high level of synthesis of repressor requires the action of the λ eII and cIII proteins. Certain mutants of λ (λcIIIs) appear to have excess cIIcIII activity and can lysogenize more efficiently than λ+. The basis for the enhanced lysogenization is that, while two or more infecting phage are necessary for λ+ to lysogenize, a single infecting λcIIIs particle is sufficient for lysogenization. Also, repressor levels in cells infected with λcIIIs are higher than in those infected with λ+. I report here that repressor overproduction by λcIIIs (1) is due to a much higher rate of repressor synthesis than that of λ+; (2) is most marked at low multiplicities of infection, possibly because λcIIIs produces repressor much more efficiently than λ+ as a singly infecting phage.  相似文献   

8.
Hyper-rec mutants of Escherichia coli were originally identified as lac-diploid strains whose colonies exhibited unusually high numbers of Lac+ papillae during growth on indicator plates (Konrad, 1977). For this work, 38 hyper-rec strains with particularly high frequencies of papillation were selected and screened further, in order to identify those unusually proficient in recombination of bacteriophage λ. The screening procedure, plate-stock growth of λ duplication phages, yielded four strains that exhibited both enhanced recombination of λ and normal (or higher) yields of progeny phage. The mutants displayed the same novel phenotype: phage recombination was normal during the first lytic infection, but was stimulated four- to sixfold if the phages had previously been propagated for several cycles in the mutants. Phages thus appeared to accumulate an enhanced potential for recombination during growth in these four strains. The mutations responsible were designated arl. Enhanced recombination of the phages propagated on arl strains occurred in subsequent test infections of both arl and arl+ bacteria, but not in recA cells. Both the high frequency of Lac+ papillae and the effects on λ recombination appeared to result from the same mutations. The former phenotype was used for genetic analysis of two arl mutants; their location is near 2 minutes on the E. coli map. Known alleles of two nearby genes, polB and mutT, do not confer a hyper-rec phenotype (by the lac-diploid assay). High-level RecA-constitutive strains do not exhibit enhanced recombination of duplication phages.  相似文献   

9.
Survival of UV-irradiated phage λ is increased when the host is lysogenic for a homologous heteroimmune prophage such as λimm434 (prophage reactivation). Survival can also be increased by UV-irradiating slightly the non-lysogenic host (UV reactivation).Experiments on prophage reactivation were aimed at evaluating, in this recombination process, the respective roles of phage and bacterial genes as well as that of the extent of homology between phage and prophage.To test whether UV reactivation was dependent upon recombination between the UV-damaged phage and cellular DNAs, lysogenic host cells were employed. Such hosts had thus as much DNA homologous to the infecting phage as can be attained. Therefore, if recombination between phage and host DNAs was involved in this repair process, it could clearly be evidenced.By using unexposed or UV-exposed host cells of the same type, prophage reactivation and UV reactivation could be compared in the same genetic background.The following results were obtained: (1) Prophage reactivation is strongly decreased in a host carrying recA mutations but quite unaffected by mutation lex-I known to prevent UV reactivation; (2) In the absence of the recA+ function, the red+ but not the int+ function can substitute for recA+ to produce prophage reactivation, although less efficiently; (3) Prophage reactivation is dependent upon the number of prophages in the cell and upon their degree of homology to the infecting phage. The presence in a recA host of two prophages either in cis (on the chromosome) or in trans (on the chromosome and on an episome) increases the efficiency of prophage reactivation; (4) Upon prophage reactivation there is a high rate of recombination between phage and prophage but no phage mutagenesis; (5) The rate of recombination between phage and prophage decreases if the host has been UV-irradiated whereas the overall efficiency of repair is increased. Under these conditions UV reactivation of the phage occurs as in a non-lysogen, as attested by the high rate of mutagenesis of the restored phage.These results demonstrate that UV reactivation is certainty not dependent upon recombination between two pre-existing DNA duplexes. The hypothesis is offered that UV reactivation involves a repair mechanism different from excision and recombination repair processes.  相似文献   

10.
We have examined the N-terminal 56 amino acid fragment, the domain that can bind DNA independently, from 3-fluorotyrosine-substituted Escherichia coli lac repressor by 19F-nuclear magnetic resonance. The fragments or “headpieces” from four altered repressers missing each of the tyrosines in turn were examined in parallel. When the wild-type N-terminal fragment is titrated with a 36 base-pair lac operator DNA sequence, the 19F resonances undergo changes in their chemical shifts that are different from those changes when the N-terminal fragment is titrated with non-specific DNA fragments. By looking at these operator-induced changes as well as pH-dependent effects with all four altered N-terminal fragments, we show systematic correlations with the genetic data. The data lead us to conclude that upon operator DNA binding: (1) tyrosine 7 is displaced to a less polar environment and the higher than normal pK value of the phenolic OH group is decreased; (2) tyrosine 12 does not change much in either its mobility or environment; and (3) tyrosine 17 is involved, as suggested by the genetic data, when the headpiece forms a complex with operator DNA.  相似文献   

11.
We have purified haemoglobin Philly by isoelectric focusing on polyacrylamide gel, and studied its oxygen equilibrium, proton nuclear magnetic resonance spectra, mechanical stability, and pH-dependent u.v. difference spectrum. Stripped haemoglobin Philly binds oxygen non-co-operatively with high affinity. Inorganic phosphate and 2,3-diphosphoglycerate have little effect on the equilibrium curve, but inositol hexaphosphate lowers the affinity and induces co-operativity. These properties are explained by the nuclear magnetic resonance spectra which show that stripped deoxyhaemoglobin Philly has the quaternary oxy structure and that inositol hexaphosphate converts it to the deoxy structure. An exchangeable proton resonance at ?8.3 p.p.m. from water, which is present in oxy- and deoxyhaemoglobin A, is absent in both these derivatives of haemoglobin Philly and can therefore be assigned to one of the hydrogen bonds made by tyrosine C1-(35)β, probably the one to aspartate H8(126)α at the α1β1 contact. Haemoglobin Philly shows the same pH-dependent u.v. difference spectrum as haemoglobin A, only weaker, so that a tyrosine other than 35β must be mainly responsible for this.  相似文献   

12.
The 10,000-nucleotide RNA genome of the Prague strain, subgroup B (PR-B) of Rous sarcoma virus, was found to contain 11.6 ± 0.5 residues of m6Ap by quantitative analysis of 32P-labeled virion RNA after complete RNAase digestion. Approximately ten of the m6Ap residues are located, without obvious clustering, in that region of the genome between 500 and 4000 nucleotides from the 3′ poly(A) end. The src gene, which is required for transformation, and part of the env gene, which codes for the major viral envelope glycoprotein, have previously been mapped in this region of the viral genome. A transformation-defective deletion mutant of PR-B Rous sarcoma virus, which lacks the src gene, has 7.0 ± 0.2 m6Ap residues per RNA subunit. This supports our mapping of a portion of the m6A residues in src and suggests that this methylation is specific to certain regions of the genome. The possible significance of this result for Rous sarcoma virus RNA processing and translation is discussed.  相似文献   

13.
Formation of pseudotypes between murine RNA tumor viruses and vesicular stomatitis virus (VSV) has been confirmed. Pseudotypes of VSV genomes coated by the surface envelope from an N-tropic tumor virus grew equally well in cells homozygous for either the Fv-1n or Fv-1b alleles. Therefore, the product of the Fv-1 locus, which restricts growth of murine RNA tumor viruses, must act on an intracellular aspect of tumor virus replication, a step after attachment and penetration.  相似文献   

14.
Lambda duplication phages grown for several rounds on Escherichia coli strains containing arl mutations were recombined at elevated frequencies (3 to 6-fold higher) in subsequent test infections. Enhanced recombination of Arl? phages (grown on arl bacteria) was demonstrable by assays for altered genetic linkages as well as by the standard assay, which measures the conversion of duplication phages (EDTA-sensitive) to single-copy phages (EDTA-resistant). The accumulated potential for enhanced recombination was lost during subsequent growth of the phages on arl+ bacteria. Arl? phages had the same mutation frequencies, at a variety of loci, as control phages; arl bacteria themselves exhibited normal mutation rates. Arl? phages had normal plating efficiencies and buoyant densities. DNA extracted from Arl? phages exhibited the same frequency of strand interruption, the same superhelical density (when circularized in vivo), and the same thermal denaturation profile as DNA from phages grown on arl+ bacteria. Recombination of Arl? phages in the presence of λ repressor was very low, as is the case for normal phages. The recombination frequency of ultraviolet light irradiated (80 J/m2) Arl? phages was more than twice the sum of the frequencies for unirradiated Arl? phages and irradiated control phages. Substantially increased recombination of Arl? phages was observed when either the E. coli RecBC, or RecE (but not RecF) pathway was active.  相似文献   

15.
Scallop myosin molecules contain two moles of regulatory light chains and two moles of light chains with unknown function. Removal of one of the regulatory light chains by treatment with EDTA is accompanied by the complete loss of the calcium dependence of the actin-activated ATPase activity and by the loss of one of the two calcium binding sites on the intact molecule. Such desensitized preparations recombine with one mole of regulatory light chain and regain calcium regulation and calcium binding. The second regulatory light chain may be selectively obtained from EDTA-treated scallop muscles by treatment with the Ellman reagent (5,5′-dithiobis(2-nitrobenzoic acid)): treatment with this reagent, however, leads to an irreversible loss of ATPase activity. The light chains obtained by treatment with EDTA and then DTNB are identical in composition and function. A different light chain fraction obtained by subsequent treatment with guanidine-HCl does not bind to desensitized or intact myoflbrils and has no effect on ATPase activity.Regulatory light chains which bind to desensitized scallop myofibrils with high affinity and restore calcium control were found in a number of molluscan and vertebrate myosins, including Mercenaria, Spisula, squid, lobster tail, beef heart, chicken gizzard, frog and rabbit. Although these myosins all have a similar subunit structure and contain about two moles of regulatory light chain, only scallop myosin or myofibrils can be desensitized by treatment with EDTA.There appear to be two classes of regulatory light chains. The regulatory light chains of molluscs and of vertebrate smooth muscles restore full calcium binding and also resensitize purified scallop myosin. The regulatory light chains from vertebrate striated, cardiac, and the fast decapod muscles, on the other hand, have no effect on calcium binding and do not resensitize purified scallop myosin unless the myosin is complexed with actin. The latter class of light chains is found in muscles where in vitro functional tests failed to detect myosin-linked regulation.  相似文献   

16.
RNA silencing is a sequence-specific gene regulation mechanism that in plants also acts antiviral. In order to counteract antiviral RNA silencing, viruses have evolved RNA silencing suppressors (RSS). In the case of tospoviruses, the non-structural NSs protein has been identified as the RSS. Although the tomato spotted wilt virus (TSWV) tospovirus NSs protein has been shown to exhibit affinity to long and small dsRNA molecules, its ability to suppress the non-cell autonomous part of RNA silencing has only been studied to a limited extent. Here, the NSs proteins of TSWV, groundnut ringspot virus (GRSV) and tomato yellow ring virus (TYRV), representatives for three distinct tospovirus species, have been studied on their ability and strength to suppress local and systemic silencing. A system has been developed to quantify suppression of GFP silencing in Nicotiana benthamiana 16C lines, to allow a comparison of relative RNA silencing suppressor strength. It is shown that NSs of all three tospoviruses are suppressors of local and systemic silencing. Unexpectedly, suppression of systemic RNA silencing by NSsTYRV was just as strong as those by NSsTSWV and NSsGRSV, even though NSsTYRV was expressed in lower amounts. Using the system established, a set of selected NSsTSWV gene constructs mutated in predicted RNA binding domains, as well as NSs from TSWV isolates 160 and 171 (resistance breakers of the Tsw resistance gene), were analyzed for their ability to suppress systemic GFP silencing. The results indicate another mode of RNA silencing suppression by NSs that acts further downstream the biogenesis of siRNAs and their sequestration. The findings are discussed in light of the affinity of NSs for small and long dsRNA, and recent mutant screen of NSsTSWV to map domains required for RSS activity and triggering of Tsw-governed resistance.  相似文献   

17.
18.
RNA modifications are abundant in eukaryotes, bacteria, and archaea. N~6-methyladenosine(m~6A), a type of RNA modification mainly found in messenger RNA(mRNA), has significant effects on the metabolism and function of m RNAs. This modification is governed by three types of proteins, namely methyltransferases as ‘‘writers' ', demethylases as ‘‘erasers' ',and specific m~6A-binding proteins(YTHDF1-3) as ‘‘readers' '. Further, it is important for the regulation of cell fate and has a critical function in many biological processes including virus replication, stem cell differentiation, and cancer development, and exerts its effect by controlling gene expression. Herein, we summarize recent advances in research on m~6A in virus replication and T cell regulation, which is a rapidly emerging field that will facilitate the development of antiviral therapies and the study of innate immunity.  相似文献   

19.
We investigated the nature of the defect in the temperature-sensitive mutant of Moloney murine sarcoma virus (Mo-MuSV), termed ts110. This mutant has a temperature-sensitive defect in a function required for maintenance of the transformed state. A nonproducer cell clone, 6m2, infected with ts110 expresses P85 and P58 at 33°C, the transformed temperature, but only P58 is detected at the restrictive temperature of 39°C. Shift-up (33°C → 39°C) and in vitro experiments have established that P85 is not thermolabile for immunoprecipitation. Previous temperature-shift experiments (39°C → 33°C) have shown that P85 synthesis resumes after a 2–3 hr lag period. Temperature shifts (39°C → 33°C) performed in the presence of actinomycin D prevented the synthesis of P85, whereas P58 synthesis did not decline for 5 hr, suggesting that P58 and P85 are translated from different mRNAs. The shift-up experiments also indicated that, once made, the RNA coding for P85 can function at the restrictive temperature for several hours. MuSV-ts110-infected cells superinfected with Mo-MuLV produced a ts110 MuSV-MuLV mixture. Sucrose gradient analysis of virus subunit RNAs revealed a ~28S and a ~35S peak. Electrophoresis of the ~28S poly(A)-containing RNA from ts110 virus in methyl mercuric hydroxide gels resolved two RNAs with estimated sizes of 1.9 × 106 and 1.6 × 106 daltons, both smaller than the wild type MuSV-349 genomic RNA (2.2 × 106 daltons). RNA in the ~28S size class from virus preparations harvested at 33°C was found to translate from P85 and P58, whereas, the ~35S RNA yielded helper virus Pr63gag. In contrast, virus harvested at 39°C was deficient in P85 coding RNA only. Peptide mapping experiments indicate that P85 contains P23 sequences, a candidate Moloney mouse sarcoma virus src gene product. Taken together, these results suggest that two virus-specific RNAs are present in ts 110-infected 6m2 cells and rescued ts110 pseudotype virions at 33°C, one coding for P85, whose expression can be interfered with by shifting the culture to 39°C; the other coding for P58, whose expression is unaffected by temperature shifts. P85 is a candidate gag-src fusion protein, while P58 contains gag sequences only.  相似文献   

20.
The thermal unfolding of ribonuclease A has been studied in solutions of 25, 35 and 50% methanol (vv), using 360 MHz proton magnetic resonance spectroscopy. Several observations indicate that the native structure of the protein in methanol cryosolvents is very similar to that in aqueous solution. A detailed analysis of the unfolding process has been made using the C-2 protons of the imidazole side-chains of the four histidine residues. As denaturation proceeds new resonances appear, whose chemical shifts correspond to neither native nor fully unfolded species. These have been assigned to particular His residues by selective deuteration studies. The thermal denaturation transitions reveal a multiphasic process in each of the solvents, and become less co-operative with increasing concentrations of methanol. The denaturation is fully reversible with no evidence of hysteresis.The new resonances that appear during the unfolding process are attributed to partially folded species, which are stabilized by the presence of the relatively hydrophobic methanol. Based on the temperature dependence of the chemical shifts and the relative areas of the various resonances, a detailed sequence of events has been proposed to describe the unfolding process. Key features include the initial general loosening of the two domains, the subsequent movement of the upper S-peptide region (residues 13 to 25) away from the main body of the protein, followed by partial separation of the sheet structure and full exposure of the N-terminal helix, leading to complete separation of the “winged domains”, and ultimately the loss of the residual sheet and helix structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号