首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
M F Carlier  D Didry  D Pantaloni 《Biochemistry》1987,26(14):4428-4437
The tubulin concentration dependence of the rates of microtubule elongation and accompanying GTP hydrolysis has been studied over a large range of tubulin concentration. GTP hydrolysis followed the elongation process closely at low tubulin concentration and became gradually uncoupled at higher concentrations, reaching a limiting rate of 35-40 s-1. The kinetic parameters for microtubule growth were different at low and high tubulin concentrations. Elongation of microtubules has also been studied in solutions containing GDP and GTP in variable proportions. Only traces of GTP present in GDP were necessary to confer a high stability (low critical concentration) to microtubules. Pure GDP-tubulin was found unable to elongate microtubules in the absence of GTP but blocked microtubule ends with an equilibrium dissociation constant of 5-6 microM. These data were accounted for by a model within which, in the presence of GTP-tubulin at high concentration, microtubules grow at a fast rate with a large GTP cap; the GTP cap may be quite short in the region of the critical concentration; microtubule stability is linked to the strong interaction between GTP and GDP subunits at the elongating site; dimeric GDP-tubulin does not have the appropriate conformation to undergo reversible polymerization. These results are discussed with regard to possible role of GDP and GTP and of GTP hydrolysis in microtubule dynamics.  相似文献   

2.
Tubulin is able to switch between a straight microtubule-like structure and a curved structure in complex with the stathmin-like domain of the RB3 protein (T2RB3). GTP hydrolysis following microtubule assembly induces protofilament curvature and disassembly. The conformation of the labile tubulin heterodimers is unknown. One important question is whether free GDP-tubulin dimers are straightened by GTP binding or if GTP-tubulin is also curved and switches into a straight conformation upon assembly. We have obtained insight into the bending flexibility of tubulin by analyzing the interplay of tubulin-stathmin association with the binding of several small molecule inhibitors to the colchicine domain at the tubulin intradimer interface, combining structural and biochemical approaches. The crystal structures of T2RB3 complexes with the chiral R and S isomers of ethyl-5-amino-2-methyl-1,2-dihydro-3-phenylpyrido[3,4-b]pyrazin-7-yl-carbamate, show that their binding site overlaps with colchicine ring A and that both complexes have the same curvature as unliganded T2RB3. The binding of these ligands is incompatible with a straight tubulin structure in microtubules. Analytical ultracentrifugation and binding measurements show that tubulin-stathmin associations (T2RB3, T2Stath) and binding of ligands (R, S, TN-16, or the colchicine analogue MTC) are thermodynamically independent from one another, irrespective of tubulin being bound to GTP or GDP. The fact that the interfacial ligands bind equally well to tubulin dimers or stathmin complexes supports a bent conformation of the free tubulin dimers. It is tempting to speculate that stathmin evolved to recognize curved structures in unassembled and disassembling tubulin, thus regulating microtubule assembly.  相似文献   

3.
Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule “structural plasticity.”  相似文献   

4.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

5.
Tau, a microtubule-associated protein which copurifies with tubulin through successive cycles of polymerization and depolymerization, has been isolated from tubulin by phosphocellulose chromatography and purified to near homogeneity. The purified protein is seen to migrate during electrophoresis on acrylamide gels as four closely spaced bands of apparent molecular weights between 55,000 and 62,000. Specific activity for induction of microtubule formation from purified tubulin has been assayed by quantitative electron microscopy and is seen to be enhanced three- to fourfold in the purified tau when compared with the unfractionated microtubule-associated proteins. Nearly 90% of available tubulin at 1 mg/ml is found to be polymerizable into microtubules with elevated levels of tau. Moreover, the critical concentration for polymerization of the reconstituted tau + tubulin system is seen to be a function of tau concentration and may be lowered to as little as 30 μg of tubulin per ml. Under depolymerizing conditions, 50% of the tubulin at only 1 mg/ml may be driven into ring structures. A separate purification procedure for isolation of tau directly from cell extracts has been developed and data from this purification suggest that tau is present in the extract in roughly the same proportion to tubulin as is found in microtubules purified by cycles of assembly and disassembly. Tau is sufficient for both nucleation and elongation of microtubules from purified tubulin and hence the reconstituted tau + tubulin system defines a complete microtubule assembly system under standard buffer conditions. In an accompanying paper (Cleveland et al., 1977) the physical and chemical properties of tau are discussed and a model by which tau may function in microtubule assembly is presented.  相似文献   

6.
The kinetics of microtubule polymerization to steady-state and the ability of tubulin subunits to exchange with polymer at steady-state were examined to determine the applicability of the head-to-tail polymerization mechanism (Wegner, 1976) to microtubule assembly in vitro. Under conditions where self-nucleation was a rare event, tubulin was induced to polymerize by the addition of short microtubule fragments, and the kinetics of elongation were analyzed as a pseudofirst-order reaction. At steady-state, a trace amount of [3H]tubulin, prepared by labeling in vivo of chick brain protein, was added to polymerized microtubules and the kinetics of label uptake into polymer were monitored by a rapid centrifugal assay. The isotope exchange kinetics were analyzed according to a theoretical model previously applied to actin polymerization (Wegner, 1976) and extended for the case of microtubule polymerization. The rate of head-to-tail polymerization, expressed as the steady-state subunit flux, was 27·6 ± 7·6 per second at 37 °C. The head-to-tail parameter s, a measure of the efficiency of subunit flux, was 0·26 ± 0·07, indicating that four association and four dissociation events resulted in the flux of one subunit through the polymer at steady-state.The role of GTP in this mechanism of microtubule polymerization was examined by replacement of the nucleotide occupying the exchangeable binding site of tubulin with the non-hydrolyzable GTP analog guanosine 5′-(β,γ-methylene)triphosphate. It was found that the rate of steady-state flux was reduced by two orders of magnitude compared to tubulin polymerized with GTP. The head-to-tail parameter approached its limiting value of zero, indicating greatly reduced efficiency of subunit flux through the polymer in the presence of this analog.In summary, this study demonstrates that microtubules exhibit significant headto-tail polymerization in the presence of GTP and, in keeping with theoretical considerations, provides evidence that nucleotide hydrolysis is required for subunit flux through the polymer.  相似文献   

7.
Summary GTP hydrolysis associated with polymerization is a distinctive feature of microtubule assembly. This reaction may be fundamentally linked to the dynamic properties of microtubules in vivo. Kinetic analysis of the connection between microtubule assembly and associated GTP hydrolysis indicates that these two events are kinetically uncoupled, GTP hydrolysis occurring after tubulin incorporation in the microtubule. As a consequence, the combination of the diffusionnal incorporation of GTP in microtubules at steady-state and of subsequent GTP hydrolysis results in the formation of a steady-state GTP cap at microtubule ends. The interplay between GTP and GDP at microtubule ends is examined. Inhibition by GDP of steady-state GTP hydrolysis at microtubule ends and of microtubule elongation is understood within a tight reversible binding of GDP at microtubule ends generating inactive elongation sites. Nucleotides are freely exchangeable at microtubule ends. This result indicates that the nature of the nucleotide present at microtubule ends must be considered in a model for microtubule assembly.These data are pooled in order to define the general features of a model describing microtubule assembly and treadmilling in terms somewhat different from previously proposed models.  相似文献   

8.
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of [14C]NAD+ and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the alpha and beta chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight mirotubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated [14C]ADP-ribose to an average extent of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD+ resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.  相似文献   

9.
Incorporation of GDP-tubulin during elongation of microtubules in vitro   总被引:1,自引:0,他引:1  
Removal of GDP from tubulin E-site is not obligatory for the in vitro assembly of microtubule protein in 0.5 mM GMPPCP. This assembly, which is significantly enhanced by glycerol, produces microtubules of normal morphology and with normal composition of microtubule-associated proteins (MAPs). [3H]-GDP initially present at the E-site is shown to be incorporated directly into microtubules during assembly; this incorporation, maximally 60% of the assembled polymer, is dependent upon MAPs. These results are consistent with oligomeric species composed principally of GDP-tubulin plus MAPs, being incorporated directly into microtubules. The finding that stoichiometric GTP-tubulin formation is not an essential prerequisite for microtubule assembly may have important implications for the energetics of microtubule formation.  相似文献   

10.
The kinetic pathway of microtubule depolymerization at 0 degrees C has been examined. Microtubules made of MAP-containing and MAP-free tubulins were depolymerized at 0 degree C in the presence of [3H]GDP or [3H]GTP or of trace amounts of 125I dimeric tubulin. The products of depolymerization were separated on a column, their structures were identified by electron microscopy, and the time course of incorporation of 3H or 125I labels in the different components of the system was determined. Two predominant assembly states of tubulin found in the nonmicrotubule state were alpha-beta dimers and double rings. Kinetic data indicate that ring formation from disassembling microtubules does not occur by direct coiling of protofilaments as previously thought, but disassembling GDP subunits are in very rapid equilibrium with curved oligomers that are kinetic intermediates in the isodesmic assembly of GDP-tubulin. The formation of oligomers and rings from dimers, at concentrations as low as 10 microM, is much faster than nucleotide exchange on alpha-beta-tubulin. Disassembly of double rings, in contrast, is slower than nucleotide exchange on alpha-beta-tubulin, by 1 order of magnitude in the absence of MAPs and 2 orders of magnitude in the presence of MAPs. These results support the model proposed previously to explain spontaneous oscillations in microtubule assembly. They are consistent with the existence of an equilibrium between two conformations of tubulin, "straight", i.e., microtubule forming, and "curved", i.e., ring forming, under the allosteric control of bound nucleotide. The straight conformation requires the presence of two ionizable hydroxyls on the gamma-phosphate in GTP or GDP-Pi.  相似文献   

11.
Several types of non-equilibrium phenomena have been observed in microtubule polymerization, including dynamic instability, assembly overshoot and oscillations. They can be interpreted in terms of interactions between tubulin subunits (= alpha, beta heterodimers), microtubules, and a third state, oligomers, which represent intermediates between microtubule disassembly and the regeneration of assembly-competent subunits by GTP. Here we examine the role of oligomers by varying conditions that stabilize or destabilize microtubules and/or oligomers. By varying their ratio one can drive tubulin assembly either into steady-state microtubules or oligomers. These regimens of assembly conditions are separated by a region where microtubules oscillate. The oscillations can be simulated by computer modelling, based on a reaction scheme involving the three states of tubulin and nucleotide exchange on tubulin subunits, but not on microtubules or oligomers.  相似文献   

12.
Microtubules are long polymers of αβ-tubulin heterodimers. They undergo a process known as dynamic instability, in which the ends of a microtubule switch stochastically between phases of slow growth and rapid shrinkage. The molecular mechanisms inducing the depolymerization of microtubules were attributed to the hydrolysis of the guanosine triphosphate (GTP) nucleotide bound to the β-tubulin. The hydrolysis of GTP is thought to cause microtubule instability by promoting outward curving of the protofilaments constituting the microtubule lattice. The bending of protofilaments is associated with the structural transformation of a tubulin dimer from straight to curved conformations. However, the nature of intrinsic bending of the dimer remains elusive. This study uses molecular dynamics (MD) simulations and coarse-grained analysis to reveal the intrinsic bending, as well as the local structural rearrangements, of the unassembled tubulin dimer as the dimer relaxes from its lattice-constrained, straight conformation of a zinc-induced tubulin sheet. The effect of the nucleotide state on dimer-bending is investigated by the introduction of γ-phosphate into the β-tubulin to form GTP-bound tubulin. In agreement with recent experimental studies that proposed nucleotide-independent curved conformations, both guanosine diphosphate (GDP)-bound and GTP-bound tubulin dimers were found to have curved conformations, but with a tendency toward smaller bending in the GTP-tubulin than in the GDP-tubulin. The perturbation induced through the introduction of γ-phosphate is posited to play a role in straightening the intradimer bending. The local structural rearrangements of GDP-tubulin because of the bending mode of motion of the dimer reveal that one of the three functional domains, the intermediate domain, exhibits significantly lower bending deformation compared with the others, signifying a dynamic connection to the functionally defined domains.  相似文献   

13.
Deuterium oxide (D(2)O) is known to promote the assembly of tubulin into microtubules in vitro, to increase the volume of mitotic spindles and the number and length of spindle microtubules, and to inhibit mitosis. Reasoning that its actions on cellular microtubules could be due to modulation of microtubule dynamics, we examined the effects of replacing H(2)O with D(2)O on microtubule dynamic instability, treadmilling, and steady-state GTPase activity. We found that replacing 50% or more of the H(2)O with D(2)O promoted microtubule polymerization and stabilized microtubules against dilution-induced disassembly. Using steady-state axoneme-seeded microtubules composed of pure tubulin and video microscopy, we found that 84% D(2)O decreased the catastrophe frequency by 89%, the shortening rate by 80%, the growing rate by 50%, and the dynamicity by 93%. Sixty percent D(2)O decreased the treadmilling rate of microtubules composed of tubulin and microtubule-associated proteins by 42%, and 89% D(2)O decreased the steady-state GTP hydrolysis rate by 90%. The mechanism responsible for the ability of D(2)O to stabilize microtubule dynamics may involve enhancement of hydrophobic interactions in the microtubule lattice and/or the substitution of deuterium bonds for hydrogen bonds.  相似文献   

14.
The maximal stoichiometry for [3H]GTP binding to depolymerized tubulin with saturating amounts of added [3H]GTP is 0.4 mol/110,000 g protein. In contrast, 1 mol of radioactive nucleotide is incorporated into microtubules as a result of polymerization with [3H]GTP. The different stoichiometries result from a difference in the nucleotide binding properties of ring protein under polymerizing and nonpolymerizing conditions: ring protein at 0 °C is devoid of binding activity but binds added radioactive guanine nucleotide during microtubule assembly. The radioactive nucleotide which is incorporated into rings during microtubule assembly is not displaced by excess GDP, although it is at a site which is distinct from the N site.  相似文献   

15.
Microtubule plus-end depolymerization rate is a potentially important target of physiological regulation, but it has been challenging to measure, so its role in spatial organization is poorly understood. Here we apply a method for tracking plus ends based on time difference imaging to measure depolymerization rates in large interphase asters growing in Xenopus egg extract. We observed strong spatial regulation of depolymerization rates, which were higher in the aster interior compared with the periphery, and much less regulation of polymerization or catastrophe rates. We interpret these data in terms of a limiting component model, where aster growth results in lower levels of soluble tubulin and microtubule-associated proteins (MAPs) in the interior cytosol compared with that at the periphery. The steady-state polymer fraction of tubulin was ∼30%, so tubulin is not strongly depleted in the aster interior. We propose that the limiting component for microtubule assembly is a MAP that inhibits depolymerization, and that egg asters are tuned to low microtubule density.  相似文献   

16.
Summary Depolymerization kinetics of microtubules assembled to steady-state by pod ophyllotoxin treatment show a dose-dependent effect of this mitotic poison on the net rate of microtubule disassembly. Pulse-chase experiments with microtubules at steady-state indicate that the depolymerization effect induced by superstoichiometric concentrations of podophyllotoxin relative to tubulin is polar and time-dependent, i.e. the rate of tubulin loss decreases along with the time of treatment in the presence of the drug. Under these conditions the rate of microtubule disassembly is much faster than one could expect from a unique effect of drug-tubulin complex on the microtubule assembly end. Podophyllotoxin-tubulin complex is not able to induce active depolymerization of microtubules, while free podophyllotoxin is. These results are consistent with the hypothesis that this drug acts on the microtubule assembly-disassembly process by two different mechanisms: 1) as a free drug, it actively promotes polar depolymerization of microtubules, and 2) as a drug-tubulin complex, it retards the addition of subunits into the microtubule ends.  相似文献   

17.
We describe in vitro microtubule assembly that exhibits, in bulk solution, behavior consistent with the GTP cap model of dynamic instability. Microtubules assembled from pure tubulin in the absence of free nucleotides could undergo one cycle of assembly, but could not sustain an assembly plateau. After the initial peak of assembly was reached and bound E-site GTP hydrolyzed to GDP, the microtubules gradually disassembled. We studied buffer conditions that maximized this disassembly while still allowing robust assembly to take place. While both glycerol and glutamate increased the rate of initial assembly and then slowed disassembly, magnesium promoted initial assembly and, surprisingly, enhanced disassembly. After cooling, a second cycle of assembly was unsuccessful unless GTP or the hydrolyzable GTP analogue GMPCPOP was readded. The nonhydrolyzable GTP analogues GMPPNP and GMPPCP could not support the second assembly cycle in the absence of E-site GTP. Analysis using HPLC found no evidence that GMPPNP, GMPPCP, or ATP could bind to free tubulin, and these nucleotides did not compete with GTP for the E-site. We have, however, demonstrated that the nonhydrolyzable GTP analogues and ATP do have an important effect on microtubule assembly. GMPPNP, GMPPCP, and ATP could each enhance the rate of assembly and stabilize the plateau of assembled microtubules against disassembly, while not binding appreciably to free tubulin. We conclude that these nucleotides, as well as GTP itself, enhance assembly by binding to a site on microtubules that is not present on free, unpolymerized tubulin. We estimate the affinity (KD) of the polymeric site for nucleotide triphosphates to be approximately 10(-4)M.  相似文献   

18.
The polymerization of microtubule protein from beef brain is inefficient under the same conditions which are optimal for the assembly of microtubules isolated from hog brain (0.1 m piperazine-N,N′-bis(2-ethanesulfonic acid) buffer at pH 6.94). In examining the conditions required for microtubule polymerization in both beef brain extract and purified microtuble protein, it was determined that the pH optimum was pH 6.62 or 0.3 pH unit lower than the reported optimum for hog. Other assembly requirements (ionic strength, Mg2+ and nucleotide concentration, temperature) remained essentially the same as for hog. By separating and recombining fractions of tubulin and nontubulin components prepared from beef and hog microtubule protein, the requirement for the reduction in pH was found to be due to the tubulin and not to the microtubule-associated proteins. It was also determined that the efficiency of beef tubulin assembly, as measured by the yield of microtubule polymer, decreased rapidly after slaughter with a half-time of 19 min. Furthermore, when the overall efficiency of polymerization was reduced, the extent of assembly at each cycle of purification by disassembly and assembly was also observed to be depressed. The variations in the requirements for neuronal tubulin assembly in two closely related mammals suggest that the conditions required for assembly of microtubule protein in other tissues and cell types may also be different.  相似文献   

19.
Mechanism of the microtubule GTPase reaction   总被引:5,自引:0,他引:5  
The rate of GTP hydrolysis by microtubules has been measured at tubulin subunit concentrations where microtubules undergo net disassembly. This was made possible by using microtubules stabilized against disassembly by reaction with ethylene glycol bis-(succinimidylsuccinate) (EGS) as sites for the addition of tubulin-GTP subunits. The tubulin subunit concentration was varied from 25 to 90% of the steady state concentration, and there was no net elongation of stabilized microtubule seeds. The GTPase rate with EGS microtubules was linearly proportional to the tubulin-GTP subunit concentration when this concentration was varied by dilution and by using GDP to compete with GTP for the tubulin E-site. The linear dependence of the rate is consistent with a GTP mechanism in which hydrolysis is coupled to the tubulin-GTP subunit addition to microtubule ends. It is inconsistent with reaction schemes in which: microtubules are capped by a single tubulin-GTP subunit, which hydrolyzes GTP when a tubulin-GTP subunit adds to the end; hydrolysis occurs primarily in subunits at the interface of a tubulin-GTP cap and the tubulin-GDP microtubule core; hydrolysis is not coupled to subunit addition and occurs randomly in subunits in a tubulin-GTP cap. It was also found that GDP inhibition of the microtubule GTPase rate results from GDP competition for GTP at the tubulin subunit E-site. There is no additional effect of GDP on the GTPase rate resulting from exchange into tubulin subunits at microtubule ends.  相似文献   

20.
Tau protein function in living cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2739-2746
Tau protein from mammalian brain promotes microtubule polymerization in vitro and is induced during nerve cell differentiation. However, the effects of tau or any other microtubule-associated protein on tubulin assembly within cells are presently unknown. We have tested tau protein activity in vivo by microinjection into a cell type that has no endogenous tau protein. Immunofluorescence shows that tau protein microinjected into fibroblast cells associates specifically with microtubules. The injected tau protein increases tubulin polymerization and stabilizes microtubules against depolymerization. This increased polymerization does not, however, cause major changes in cell morphology or microtubule arrangement. Thus, tau protein acts in vivo primarily to induce tubulin assembly and stabilize microtubules, activities that may be necessary, but not sufficient, for neuronal morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号