首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The nuclear hormone receptors comprise one of the largest classes of protein targets for drug discovery, as their function has been linked to a variety of serious diseases, including several forms of cancer. Identifying novel compounds with the ability to modulate the function of these targets could lead to the development of effective therapeutics. In vivo sensors of ligand binding have emerged as tools that can greatly accelerate the lead identification process, allowing new drugs to be discovered more rapidly and cheaply. In this work, a novel sensor of nuclear hormone binding has been developed in Escherichia coli by constructing a fusion of the ligand-binding domain of the human estrogen receptor with a thymidylate synthase enzyme (TS). Expression of this fusion protein in TS-deficient bacterial cells resulted in growth phenotypes that were dependent on the presence of estrogen. Subsequent replacement of the estrogen receptor with the ligand-binding domain of the human thyroid hormone receptor led to specific thyroid hormone-enhanced growth that was insensitive to estrogen. This biosensor was then challenged with a small library of estrogen and thyroid hormone analogues, and it was observed that levels of cell growth correlate well with ligand-binding affinity. Remarkably, this simple biosensor was able to discriminate between agonistic and antagonistic activities, as combinations of estrogen agonists had an additive impact on cell growth, whereas known estrogen antagonists were found to neutralize agonist effects. This system constitutes a technique for facile selection of lead compounds with potential medical applications.  相似文献   

5.
To determine whether the human estrogen receptor requires ligand to bind to its cognate estrogen receptor element (ERE) in vivo, we have examined the structure of chromatin at a chromosomally integrated ERE-URA3 reporter gene in yeast, and the influence of ligand bound and ligand free estrogen receptors on that structure. Using indirect end-labelling to map DNaseI and micrococcal nuclease sensitive sites, we found that receptor induced alterations in chromatin structure were completely dependent upon the presence of estradiol. These same alterations in chromatin structure were induced by a truncated estrogen receptor with both TAF-1 and TAF-2 transactivation functions deleted, suggesting that DNA binding per se disrupts chromatin structure. These results support models in which the estrogen receptor requires ligand to bind to the ERE in vivo.  相似文献   

6.
7.
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.  相似文献   

8.
A 10-step synthesis of a novel 4-hydroxytamoxifen-DTPA ligand (HOTam-DTPA) is reported. Tamoxifen and its primary metabolite 4-hydroxytamoxifen are common estrogen receptor ligands. Consequently, tamoxifen has found utility as the targeting component of various diagnostic agents for selective imaging of estrogen receptor-rich tissue, specifically breast cancer. An L-aspartic acid-derived DTPA analogue was attached to the ethyl side chain of 4-hydroxy-tamoxifen using N,N'-dimethylethylenediamine as a hydrophilic linker. A competitve estrogen receptor binding assay using [3H]-17beta-estradiol was performed to determine the effect of the ethyl side chain modification on estrogen receptor affinity. The results show that while the relative affinity of HOTam-DTPA for the estrogen receptor is approximately 10-fold lower than that of tamoxifen, it still remains a potent ligand at relatively low concentrations.  相似文献   

9.
Jiang XR  Wang P  Fu X  Zhu BT 《Steroids》2008,73(12):1252-1261
High-affinity biotinylated derivatives of 17beta-estradiol (E(2)) are of value for isolation of various estrogen-binding proteins (including estrogen receptors) and also for studying protein-protein interactions involving these proteins. In this study, we developed a simplified route for the chemical synthesis of a biotinylated derivative of E(2) (compound 7) with a side chain attached to its C-7alpha position. Compound 7, i.e., 7alpha-{7-[8-(biotinamido)-octanamido]-heptyl}-estradiol, could be readily synthesized from 6-keto-estradiol-3,17beta-di-tetrahydropyranyl ether (compound 2, which can be prepared from E(2)), with a final yield of 36%. In vitro receptor-binding assay confirmed that the synthesized affinity ligand has a high binding affinity for both human estrogen receptor alpha and beta. When the affinity ligand (compound 7) was immobilized with avidin on an affinity column, it effectively bound human estrogen receptor alpha, and the receptor protein could be selectively eluted with a biotin-containing buffer. Using the same affinity ligand, prolyl 4-hydroxylase beta-subunit (also known as protein disulfide isomerase) was identified as one of the high-affinity E(2)-binding proteins in the whole cytosolic protein mixture prepared from MCF-7 human breast cancer cells. Computational molecular modeling analysis showed that compound 7 can bind to human estrogen receptor alpha in a similar manner as ICI-182,780 and raloxifene, and their binding energy values are also similar.  相似文献   

10.
Abstract

Partial agonists such as estriol and estrone have been reported to diminish or even eliminate the upward convexity of the Scatchard plot of the binding of labeled estradiol to estrogen receptor. This has been interpreted as agonist interference with the receptor dimerization induced by estradiol. In order to investigate how a partial agonist or antagonist might interfere with dimerization we have developed a theoretical mass-action law model, where soluble receptors can dimerize and bind to two different ligands. Special attention was devoted to manifestations of positive cooperativity to determine whether they could be modified by competition with a second ligand. This was done using a computer program that evaluated a large set of combinations of affinity constants in an effort to explore all possible situations. The model could reproduce the effect of a second ligand on the cooperative binding of estradiol to the estrogen receptor but only if the second ligand was anticooperative, which is not the case of estriol, estrone and tamoxifen. Furthermore, even when the Scatchard plot was linear, the model still required dimerization of the receptor in most of the cases, showing that the addition of an antagonist may eliminate the upward curvature of the Scatchard without truly eliminating dimerization or cooperativity. We conclude that the effect of a second ligand on the binding of labeled estradiol to estrogen receptor is not necessarily due to interference with dimerization and/or cooperativity. The inability of this model to fully explain the published data for estriol, estrone, clomiphene, and tamoxifen suggests that a more complex mechanism is involved.  相似文献   

11.
12.
13.
It has been suggested that binding of 11 beta-chloromethyl estradiol (11 beta-CME2) to the estrogen receptor is irreversible, since its complex with receptor fails to undergo exchange with estradiol (E2). To investigate this behavior directly, 11 beta-CME2 was prepared in high specific activity, tritium-labeled form: The binding of [3H]11 beta-CME2 to the estrogen receptor from lamb and rat uterus and MCF-7 human breast cancer cells was shown to be fully reversible; the 11 beta-CME2 complex with receptor, as well as that of a structural analog 11 beta-ethyl estradiol, however, do not dissociate or exchange with [3H]E2 over a 22 h period at 25 degrees C. By competitive or direct binding assays, the affinity of 11 beta-CME2 for the estrogen receptor can be estimated to be as much as 10- to 30-fold higher than that of E2. The complexes of estrogen receptor from MCF-7 cells with [3H]11 beta-CME2 and [3H]E2 show identical velocity sedimentation profiles on sucrose gradients, under conditions when the receptor is either a monomer of a dimer. Because of its very high affinity and unusual dissociation kinetics, [3H]11 beta-CME2 should be a very useful ligand for studies of estrogen receptor dynamics and in the assay of estrogen receptor concentrations in tumors and tissues.  相似文献   

14.
15.
A new approach to heterogeneous enzyme immunoassays has been developed that uses a tag molecule linked to an enzyme-ligand conjugate. The insoluble phase is an insolubilized receptor to that tag. The antibody to the ligand, in addition to complexing either the free ligand or the one covalently linked to the tagged enzyme, also serves to mask the tag on the tagged enzyme-ligand conjugate so that it can no longer bind to the insolubilized receptor. Accordingly, the proportion of enzyme conjugate associated with the insoluble fraction is proportional to the amount of analyte ligand being assayed. This heterogeneous EIA based on the “antibody masking the tag” is called AMETIA. In the model system we use DNP-lysine as the ligand, β-galactosidase as the enzyme, biotin as the tag, and avidin immobilized to Sepharose as the insoluble receptor.  相似文献   

16.
17.
18.
19.
20.
Regulation of nuclear receptor (NR) activity is driven by alterations in the conformational dynamics of the receptor upon ligand binding. Previously, we demonstrated that hydrogen/deuterium exchange (HDX) can be applied to determine novel mechanism of action of PPARγ ligands and in predicting tissue specificity of selective estrogen receptor modulators. Here, we applied HDX to probe the conformational dynamics of the ligand binding domain (LBD) of the vitamin D receptor (VDR) upon binding its natural ligand 1α,25-dihydroxyvitamin D3 (1,25D3), and two analogs, alfacalcidol and ED-71. Comparison of HDX profiles from ligands in complex with the LBD with full-length receptor bound to its cognate receptor retinoid X receptor (RXR) revealed unique receptor dynamics that could not be inferred from static crystal structures. These results demonstrate that ligands modulate the dynamics of the heterodimer interface as well as provide insight into the role of AF-2 dynamics in the action of VDR partial agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号