首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequence of the operators of ultravirulent mutants of lambda, able to grow on host cells with elevated repressor levels, was determined. It appears that ultravirulence in lambda requires multiple mutational events at the operator sequences. OL1, OL2, and OL3 operator sites are the target of mutational changes in ultravirulent phages indicating that these sites participate in vivo in repression of the PL promoter. No changes were found in the OR3 sequence, in contrast there is a mutation in OR2 and two mutations in OR1, in both lambda 668 and lambda 2668 phages. This mutated operator structure accounts for the constitutive expression of their PR promoter either in cells overproducing the lambda repressor or in cells overproducing the cro gene product. A model of the structure of the lambda operator site is proposed. The nucleotide sequence in each site can be divided into two functionally different subsets, one of which is recognized by the repressor while the other stabilizes the repressor-operator interaction.  相似文献   

2.
Previous structures of Lac repressor bound to DNA used a fully symmetric "ideal" operator sequence that is missing the central G-C base-pair present in the three natural operator sequences. Here we have determined the X-ray crystal structure of a dimeric Lac repressor bound to a 22 base-pair DNA with the natural operator O1 sequence and the anti-inducer ONPF, at 4.0 A resolution. The natural operator is bent in the same way as the symmetric sequence, due to the binding of the hinge helices of the repressor to the minor groove at the central GCGG sequence of O1. Comparison of the structures of the repressor bound to the natural and symmetric operators shows very similar overall structures, with only slight rearrangements of the headpiece domains of the repressor. Analysis of crystals with iodinated DNA shows that the operator is uniquely positioned and allows for the sequence registration of the DNA relative to the repressor to be determined. The kink in the operator is centered between the left half-site and the central G-C base-pair of O1. Our results are most consistent with a previously proposed model in which, relative to the complex with the symmetric operator, the repressor accommodates binding to the natural operator sequence by shifting the position of the right headpiece by one base-pair step towards the center of O1.  相似文献   

3.
We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein.  相似文献   

4.
H M Sasmor  J L Betz 《Gene》1990,89(1):1-6
We have analyzed lac repressor binding in vivo and in vitro to several symmetric lac operator sequences. Two features of the operator appear to be important for repressor binding: sequence, both of the operator and of its extended regions, and the spacing of the operator halves. Host mutations that alter DNA superhelical density (topA, gyrB) did not change the relative affinity of cloned symmetric operator sequences for repressor. Analysis by dimethylsulfate methylation and DNaseI digestion of repressor-operator complexes indicated that repressor makes symmetric contacts with the symmetric operator, in contrast to its contacts with the two halves of the natural operator.  相似文献   

5.
The Escherichia coli Trp repressor binds to promoters of very different sequence and intrinsic activity. Its mode of binding to trp operator DNA has been studied extensively yet remains highly controversial. In order to examine the selectivity of the protein for DNA, we have used electromobility shift assays (EMSAs) to study its binding to synthetic DNA containing the core sequences of each of its five operators and of operator variants. Our results for DNA containing sequences of two of the operators, trpEDCBA and aroH are similar to those of previous studies. Up to three bands of lower mobility than the free DNA are obtained which are assigned to complexes of stoichiometry 1 : 1, 2 : 1 and 3 : 1 Trp repressor dimer to DNA. The mtr and aroL operators have not been studied previously in vitro. For DNA containing these sequences, we observe predominantly one retarded band in EMSA with mobility corresponding to 2 : 1 complexes. We have also obtained retardation of DNA containing the trpR operator sequence, which has only been previously obtained with super-repressor Trp mutants. This gives bands with mobilities corresponding to 1 : 1 and 2 : 1 complexes. In contrast, DNA containing containing a symmetrized trpR operator sequence, trpRs, gives a single retarded band with mobility corresponding solely to a 1 : 1 protein dimer-DNA complex. Using trpR operator variants, we show that a change in a single base pair in the core 20 base pairs can alter the number of retarded DNA bands in EMSA and the length of the DNase I footprint observed. This shows that the binding of the second dimer is sequence selective. We propose that the broad selectivity of Trp repressor coupled to tandem 2 : 1 binding, which we have observed with all five operator sequences, enables the Trp repressor to bind to a limited number of sites with diverse sequences. This allows it to co-ordinately control promoters of different intrinsic strength. This mechanism may be of importance in a number of promoters that bind multiple effector molecules.  相似文献   

6.
The specificity of LexA protein binding was investigated by quantifying the repressibility of several mutant recA and lexA operator-promoter regions fused to the Escherichia coli galactokinase (galK) gene. The results of this analysis indicate that two sets of four nucleotides, one set at each end of the operator (terminal-nucleotide contacts), are most critical for repressor binding. In addition, our results suggest that the repressor-operator interaction is symmetric in nature, in that mutations at symmetrically equivalent positions in the recA operator have comparable effects on repressibility. The symmetry of this interaction justified reevaluation of the consensus sequence by half-site comparison, which yielded the half-site consensus (5')CTGTATAT. Although the first four positions of this sequence were most important, the last four were well conserved among binding sites and appeared to modulate repressor affinity. The role of the terminal-nucleotide contacts and the mechanism by which the internal sequences affected repressor binding are discussed.  相似文献   

7.
Nucleotide sequences in two wild-type and six mutant operators in the DNA of phage λ are compared. Strikingly similar 17 base pair units are found which we identify as the repressor binding sites. Each operator contains multiple repressor binding sites separated by A-T rich spacers. Elements of 2 fold rotational symmetry are present in each of the sites. Superimposed on each operator is an E. coli RNA polymerase recognition site (promoter). Similarities in the sequences of the two λ promoters, a lac promoter, and an E. coli RNA polymerase recognition site in SV40 DNA are noted.  相似文献   

8.
9.
10.
Primer extension experiments showed that the argR gene, encoding the arginine repressor in Salmonella typhimurium, is transcribed from a single promoter that is negatively regulated by arginine. A repressor overproducing strain was constructed and the repressor was purified to homogeneity. Gel filtration, sedimentation and cross-linking studies established that the native repressor is a hexamer of identical 17,000 Mr subunits. Gel retardation experiments indicate that the apparent dissociation constant for repressor/carAB operator is 6 x 10(-12) M. These experiments showed that arginine is essential for binding of the repressor to the DNA and that pyrimidine nucleotides have no significant effect on this binding. These results indicate that the effect of pyrimidines on expression of the arginine sensitive "downstream" carAB promoter is not directly mediated by the arginine repressor. These experiments also suggest that a single hexamer binds to the carAB operator, which carries two previously defined "ARG box" sequences that characterize operators for arg genes. Gel retardation experiments with DNA fragments carrying the individual ARG boxes showed that both boxes are required for effective binding of the hexameric repressor to the operator, indicating that the ARG boxes comprise a single binding site for the repressor. Analysis of the potential secondary structure of the arginine repressor does not reveal any of the recognizable structural motifs common to a number of DNA-binding proteins. A combination of DNase I, premethylation interference, depurination and hydroxyl radical footprinting techniques were employed to characterize the interactions of the repressor with the carAB operator, with the results suggesting that the repressor predominantly interacts with A.T residues in this region. Comparative DNA sequence analysis of the known arginine operators of enteric bacteria further indicates that the specificity of interaction may be based more on the precise distance between two defined A.T-rich regions rather than on the specific nucleotide sequence.  相似文献   

11.
12.
The repressor of bacteriophage P1, encoded by the c1 gene, represses the phage lytic functions and is responsible for maintaining the P1 prophage in the lysogenic state. The c1 repressor interacts with at least 11 binding sites or operators widely scattered over the P1 genome. From these operators, a 17 base-pair asymmetric consensus sequence, ATTGCTCTAATAAATTT, was derived. Here, we show that the operator, Op72 of the P1ban operon consists of two overlapping 17 base-pair sequences a and b forming an incomplete palindrome. Op72a matches the consensus sequence, whereas Op72b contains two mismatches. The evidence is based on the sequence analysis of 27 operator mutants constitutive for ban expression. They were identified as single-base substitutions at positions 2 to 10 of Op72a (26 mutants) and at position 8 of Op72b (one mutant). We conclude from gel retardation and footprinting studies that two repressor molecules bind to the operator and that positions 4, 5 and 7 to 10 of the operator play an essential role in repressor recognition.  相似文献   

13.
The ula regulon, responsible for the utilization of L-ascorbate in Escherichia coli, is formed by two divergently transcribed operons, ulaG and ulaABCDEF. The regulon is negatively regulated by a repressor of the DeoR family which is encoded by the constitutive gene ulaR located downstream of ulaG. Full repression of the ula regulon requires simultaneous interaction of the repressor with both divergent promoters and seems to be dependent on repressor-mediated DNA loop formation, which is helped by the action of integration host factor. Two operator sites have been identified in each promoter. Lack of either of the two sets of operators partially relieved the repression of the other operon; thus, each promoter is dependent on the UlaR operator sites of the other promoter to enhance repression. Electrophoretic mobility shift assays with purified UlaR protein and promoter deletion analyses revealed a conserved sequence, present in each of the four operators, acting as a UlaR binding site. Glucose represses the ula regulon via at least two mechanisms, one dependent on cyclic AMP (cAMP)-cAMP receptor protein (CRP) and the other (possibly inducer exclusion) independent of it. Glucose effects mediated by other global regulators cannot be ruled out with the present information. Changes in cAMP-CRP levels affected only the expression of the ulaABCDEF operon.  相似文献   

14.
15.
The tet operators of two naturally evolved tetracycline resistance determinants differ by a G.C to A.T transition at the sixth base pair. This mutation prevents heterologous recognition of these tet operators by their respective two Tet repressor proteins. The amino acid side chains responsible for this sequence-specific distinction of operators were determined. For this purpose in vitro recombinants of the two tetR genes were constructed. Restriction sites were introduced by oligonucleotide-directed mutagenesis in both genes followed by the exchange of different coding segments between them. The encoded chimeric Tet repressor proteins were expressed and their operator recognition specificity was scored in vivo. Exchanging gradually smaller coding segments led finally to a single amino acid exchange in both genes at position 40 of the primary structures. Each Tet repressor containing Thr at this position recognizes the G.C operator while those with Ala recognize the A.T operator regardless of the rest of the sequences. This result demonstrates clearly that the amino acid 40 of Tet repressor contacts and recognizes base pair 6 of tet operator. Sterical interference of the large Thr side chain with the methyl group of A.T and a possible involvement of the hydroxyl in hydrogen bonding to the operator are discussed as the molecular basis of this differentiation between A.T and G.C base pairs.  相似文献   

16.
17.
18.
Falcon CM  Matthews KS 《Biochemistry》2000,39(36):11074-11083
The mechanism by which genetic regulatory proteins discern specific target DNA sequences remains a major area of inquiry. To explore in more detail the interplay between DNA and protein sequence, we have examined binding of variant lac operator DNA sequences to a series of mutant lactose repressor proteins (LacI). These proteins were altered in the C-terminus of the hinge region that links the N-terminal DNA binding and core sugar binding domains. Variant operators differed from the wild-type operator, O(1), in spacing and/or symmetry of the half-sites that contact the LacI N-terminal DNA binding domain. Binding of wild-type and mutant proteins was affected differentially by variations in operator sequence and symmetry. While the mutant series exhibits a 10(4)-fold range in binding affinity for O(1) operator, only a approximately 20-fold difference in affinity is observed for a completely symmetric operator, O(sym), used widely in studies of the LacI protein. Further, DNA sequence influenced allosteric response for these proteins. Binding of this LacI mutant series to other variant operator DNA sequences indicated the importance of symmetry-related bases, spacing, and the central base pair sequence in high affinity complex formation. Conformational flexibility in the DNA and other aspects of the structure influenced by the sequence may establish the binding environment for protein and determine both affinity and potential for allostery.  相似文献   

19.
20.
The influence of additional operator or pseudooperator sequences on the lactose repressor-operator interaction has been investigated. Results of kinetic and equilibrium binding measurements suggest an important in vivo role for the Z-gene pseudooperator in repressor-operator binding; the formation of a ternary, looped complex is indicated by the influence of secondary operator sites on binding parameters. Although the binding affinity of the Z-gene pseudooperator [Oz] is only approximately 1/30 that observed for the primary operator [O], the binding affinity to DNA containing both Oz and O is significantly higher than either sequence alone or the sum of the two. This synergistic effect is enhanced further by replacing the pseudooperator sequence [Oz] with the primary operator sequence and results in an even stronger ternary complex in plasmids with duplicate primary sites. The distance between the center of the two primary operators affects the formation of a ternary complex in the linear DNA molecules. Decreased dissociation rate constants were observed with spacing of operator-like sequences between 300 and 500 base pairs (bp). Minimal influence of the second operator on repressor binding is observed when the operators are separated by approximately 4000 or approximately 100 bp. The significant influence of distance on kinetic and equilibrium parameters was demonstrated by measurements on plasmid pRW1511 [Oi-O-PL-Oz] cleaved with restriction enzymes either in the polylinker region to place Oi-O and Oz on opposite ends of the linear plasmid or outside this region to maintain the sites within 500 bp. These results are consistent with the formation of operator-repressor-pseudooperator ternary complex to generate a looped DNA structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号