首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of abnormal proteins produced as a result of incorporation of the arginine analog L-canavanine or generated by exposure to puromycin was studied in wild-type and multiply peptidase-deficient strains of Salmonella typhimurium. Both types of abnormal protein were rapidly degraded during growth of Pep+ strains of this organism. Peptidase--deficient mutants (lacking peptidases N, A, B, and D) could also degrade these abnormal proteins, although the rate of production of trichloroacetic acid-soluble degradation products was slower in the mutant strain than in a strain carrying a normal complement of peptidases. Analysis of these trichloroacetic acid-soluble degradation products of ion-exchange chromatography showed that free amino acid was the major breakdown product produced by the wild-type strain. The acid-soluble degradation product produced by the mutant strain, however, was a complex mixture that contained a variety of small peptides as well as free amino acids. These results indicate that the same group of peptidases shown previously to function in the degradation of exogenously supplied peptides and in protein turnover during carbon starvation also lie on the pathway by which abnormal proteins are degraded.  相似文献   

2.
M C Montel  J Labadie 《Biochimie》1982,64(1):37-44
During the growth of Empedobacter collagenolyticum on a medium with gelatin, only one proteinase, a collagenase, was excreted in the culture medium. No other proteolytic activity was detected in the extracellular medium or in acellular extracts. The other proteases of this bacteria are principally intracellular peptidases. By electrophoresis of an acellular extract five peptidases were separated; they were aminopeptidases and dipeptidases. Some of them exhibited a specificity towards peptides with aminoacid frequently found in collagen; Gly-Leu, Gly-Pro, Pro-Gly-Gly. Two other peptidases seem to have special specificity, one of them hydrolyses peptides with lysine residues at the NH2 terminal end, the other one hydrolyses dipeptides of the structure Lys-X. These enzymes were also found in the culture medium; they certainly play an important role in bacterial nutrition.  相似文献   

3.
4.
Listeria monocytogenes is a gram-positive intracellular pathogen responsible for opportunistic infections in humans and animals. Here we identified and characterized the dtpT gene (lmo0555) of L. monocytogenes EGD-e, encoding the di- and tripeptide transporter, and assessed its role in growth under various environmental conditions as well as in the virulence of L. monocytogenes. Uptake of the dipeptide Pro-[14C]Ala was mediated by the DtpT transporter and was abrogated in a ΔdtpT isogenic deletion mutant. The DtpT transporter was shown to be required for growth when the essential amino acids leucine and valine were supplied as peptides. The protective effect of glycine- and proline-containing peptides during growth in defined medium containing 3% NaCl was noted only in L. monocytogenes EGD-e, not in the ΔdtpT mutant strain, indicating that the DtpT transporter is involved in salt stress protection. Infection studies showed that DtpT contributes to pathogenesis in a mouse infection model but has no role in bacterial growth following infection of J774 macrophages. These studies reveal that DptT may contribute to the virulence of L. monocytogenes.  相似文献   

5.
Aims:  To determine the ability of a novel Bacillus subtilis AMR isolated from poultry waste to hydrolyse human hair producing peptidases including keratinases and hair keratin peptides.
Methods and Results:  The Bacillus subtilis AMR was identified using biochemical tests and by analysis of 16S rDNA sequence. The isolate was grown in medium containing human hair as the sole source of carbon and nitrogen. The supplementation of hair medium (HM) with 0·01% yeast extract increased the keratinolytic activity 4·2-fold. B. subtilis AMR presented high keratinase production on the 8th day of fermentation in hair medium (HM) supplemented with 0·01% yeast extract (HMY) at pH 8·0. Keratinase yield was not correlated with increase in biomass. Zymography showed keratin-degrading peptidases migrating at c. 54, 80 and 100 kDa and gelatin-degrading bands at c. 80, 70 63, 54 32 and 15 kDa. Keratinases were optimally active at 50°C and pH 9·0 and was fully inhibited by the serine proteinase inhibitor (PMSF). Scanning electron microscopy showed complete degradation of the hair cuticle after exposure to B. subtilis AMR grown in HMY. MALDI-TOF analysis of culture supernatant containing peptides produced during enzymatic hydrolysis of hair by B. subtilis AMR revealed fragments in a range of 800–2600 Da.
Conclusions:  This study showed that B. subtilis AMR was able to hydrolyse human hair producing serine peptidases with keratinase and gelatinase activity as well as hair keratin peptides.
Significance and Impact of the Study:  This is the first report describing the production and partial characterization of keratinases by a B. subtilis strain grown in a medium containing human hair . These data suggest that peptides obtained from enzymatic hair hydrolysis may be useful for future applications on pharmaceutical and cosmetic formulations.  相似文献   

6.
Fate of peptides in peptidase mutants of Lactococcus lactis   总被引:2,自引:1,他引:1  
The utilization of exogenous peptides was studied in mutants of Lactococcus lactis in which combinations of the peptidase genes pepN pepC pepO pepX and pepT were deleted. Multiple mutants lacking PepN, PepC, PepT plus PepX could not grow on peptides such as Leu–Gly–Gly, Gly–Phe–Leu, Leu–Gly–Pro, Ala–Pro–Leu and Gly–Leu–Gly–Leu, respectively, indicating that no other peptidases are present to release the essential amino acid Leu. In these mutants, peptides accumulate intracellularly, demonstrating that peptides are translocated as whole entities prior to degradation. The mutant lacking all five peptidases could still grow on Gly–Leu and Tyr–Gly–Gly–Phe–Leu, which confirmed the presence of a dipeptidase and led to the identification of an unknown PepO-like endopeptidase. These studies have also shown that the general aminopeptidases PepN, PepC and PepT have overlapping but not identical specificities and differ in their overall activity towards individual peptides. In contrast, PepX has an unique specificity, because it is the only enzyme which can efficiently degrade Ala–Pro–Leu. The concerted action of peptidases in the breakdown of particular peptides revealed how these substrates are utilized as sources of nitrogen.  相似文献   

7.
Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes.  相似文献   

8.
Peptidyl proline hydroxylase inhibitors block the growth of cultured soybean (Glycine max) cells and bring about the disappearance of the major salt-extractable hydroxyproline-rich protein, the 33 kilodalton repetitive proline-rich protein (RPRP2). Three polypeptides of 28, 20, and 14 kilodalton that cross-react with an antibody to RPRP2 accumulate in the culture during steady-state growth. In the presence of the proline hydroxylase inhibitors, all of these repetitive proline-rich proteins disappear. These results indicate that the hydroxyproline-rich proteins play a role in cell growth, and that hydroxylation may regulate the steady-state level of at least one of these proteins by influencing its turnover.  相似文献   

9.
The major exocellular glycopeptide (peptidophosphogalactomannan) produced by Penicillum charlesii first appears in the culture filtrate when the growth medium is nearly depleted of NH4+. The extent of incorporation of exogenously supplied radioactive precursors (D-[U-14C] GLUCOSE, L-[U-14C]threonine and NaH2(32)PO4) into peptidophosphogalactomannan suggests that approximately 20% of the total quantity of peptidophosphogalactomannan is assembled from constituents taken from the growth medium before NH4+ starvation and that the remainder is assembled from constituents in the medium during NH4" starvation. In the absence of NH4+, an increase in dry weight continues until the medium is depleted of glucose. However, peptidophosphogalactomannan accumulation proceeds until after glucose is depleted and growth is halted. These data suggest that peptidophosphogalactomannan is a product of cellular turnover.  相似文献   

10.
Post-translational modifications are essential for a variety of functions, such as the translocation, activation, regulation, and, ultimately, degradation of proteins. The amino-terminal (N-terminal) region is a particularly active area for such alterations. Three types of reactions predominate: limited proteolysis to remove one or more amino acids; modification of the alpha-amino group; and side-chain-specific changes. The N-terminal peptidases expose penultimate residues, providing new substrates for peptidase or transferase action. These enzymes can act sequentially or competitively to influence a protein's longevity, location or activity. N-terminal modifying enzymes (NTMEs) might target a protein for ubiquitination and degradation or protect a protein from rapid turnover. The N-terminal peptidases might also have important roles in processing the peptides that are released from the proteasome. Plant NTMEs have roles in senescence, meiosis and defense, and proposed roles in polar auxin transport.  相似文献   

11.
Lin PP 《Plant physiology》1984,76(2):372-380
Active polyamine biosynthesis occurs in the embryonic axis, but not in the cotyledons, during germination of Glycine max (L.) cv Williams seeds and subsequent growth of the young seedlings. The hypocotyl and radicle synthesize and accumulate considerable amounts of cadaverine (Cad) and putrescine (Put) during the early stages of growth. Most of the amino acid precursors for the diamines are supplied from breakdown of the cotyledonary protein.  相似文献   

12.
The consumption of amino acids and peptides was monitored during growth in milk of proteinase-positive (Prt+) and -negative (Prt-) strains of Lactococcus lactis. The Prt- strains showed monophasic exponential growth, while the Prt+ strains grew in two phases. The first growth phases of the Prt+ and Prt- strains were in same, and no hydrolysis of casein was observed. Also, the levels of consumption of amino acids and peptides in the Prt+ and Prt- strains were similar. At the end of this growth phase, not all free amino acids and peptides were used, indicating that the remaining free amino acids and peptides were unable to sustain growth. The consumption of free amino acids was very low (about 5 mg/liter), suggesting that these nitrogen sources play only a minor role in growth. Oligopeptide transport-deficient strains (Opp-) of L. lactis were unable to utilize oligopeptides and grew poorly in milk. However, a di- and tripeptide transport-deficient strain (DtpT-) grew exactly like the wild type (Opp+ Dtpt+) did. These observations indicate that oligopeptides represent the main nitrogen source for growth in milk during the first growth phase. In the second phase of growth of Prt+ strains, milk proteins are hydrolyzed to peptides by the proteinase. Several of the oligopeptides formed are taken up and hydrolyzed internally by peptidases to amino acids, several of which are subsequently released into the medium (see also E.R.S. Kunji, A. Hagting, C.J. De Vries, V. Juillard, A.J. Haandrikman, B. Poolman, and W.N. Konings, J. Biol. Chem. 270:1569-1574, 1995).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Copper is a highly reactive, toxic metal; consequently, transport of this metal within the cell is tightly regulated. Intriguingly, the actinobacterium Kineococcus radiotolerans has been shown to not only accumulate soluble copper to high levels within the cytoplasm, but the phenotype also correlated with enhanced cell growth during chronic exposure to ionizing radiation. This study offers a first glimpse into the physiological and proteomic responses of K. radiotolerans to copper at increasing concentration and distinct growth phases. Aerobic growth rates and biomass yields were similar over a range of Cu(II) concentrations (0–1.5 mM) in complex medium. Copper uptake coincided with active cell growth and intracellular accumulation was positively correlated with Cu(II) concentration in the growth medium (R2 = 0.7). Approximately 40% of protein coding ORFs on the K. radiotolerans genome were differentially expressed in response to the copper treatments imposed. Copper accumulation coincided with increased abundance of proteins involved in oxidative stress and defense, DNA stabilization and repair, and protein turnover. Interestingly, the specific activity of superoxide dismutase was repressed by low to moderate concentrations of copper during exponential growth, and activity was unresponsive to perturbation with paraquot. The biochemical response pathways invoked by sub-lethal copper concentrations are exceptionally complex; though integral cellular functions are preserved, in part, through the coordination of defense enzymes, chaperones, antioxidants and protective osmolytes that likely help maintain cellular redox. This study extends our understanding of the ecology and physiology of this unique actinobacterium that could potentially inspire new biotechnologies in metal recovery and sequestration, and environmental restoration.  相似文献   

14.
phoU mutants of bacteria are potentially useful for the removal of inorganic phosphate (Pi) from sewage because they can accumulate a large amounts of polyphosphate (polyP). However, the growth of phoU mutants is severely defective and is easily outgrown by revertant(s) that have lost the ability to accumulate polyP during growth in a nutrient-rich medium. We found that a pseudo-revertant, designated LAP[+], that appeared in a culture of an Escherichia coli phoU mutant that could accumulate polyP even after ten serial passages. Reduction in the expression of the Pi-specific transporter Pst in LAP[+] may contribute to relieving stresses such as excess Pi incorporation that could stimulate reversions. The discovery of a LAP[+] provides a clue to generate phoU mutants that accumulate polyP in a stable manner.  相似文献   

15.
Indoleacetic Acid synthesis in soybean cotyledon callus tissue   总被引:2,自引:1,他引:1       下载免费PDF全文
Growth of an auxin-requiring soybean cotyledon callus tissue (Glycine max L., Merr. var. Acme) was promoted by tryptophan, tryptamine, indole, indoleacetamide and, to a very slight degree, anthranilic acid. When tryptophan-3-14C was supplied in the growth medium, labeled indoleacetic acid (IAA) was found in both the tissue and the medium. Medium, from which the cells had been removed, was also found to convert labeled tryptophan to IAA. Soybean callus contained 0.044 μmole/g free tryptophan, but this is apparently not available for conversion to IAA. These results suggest that while exogenously supplied trytophan could elevate a specific internal pool where IAA synthesis occurs some of the growth on a tryptophan medium can be accounted for by external conversion.  相似文献   

16.
Utilization of dipeptides by Lactococcus lactis ssp. cremoris   总被引:3,自引:0,他引:3  
A van Boven  W N Konings 《Biochimie》1988,70(4):535-542
Different strains of Lactococcus lactis ssp. cremoris hydrolyze peptides at different rates while the cell-free extracts of these strains all show the same or much higher rates of hydrolysis. These observations indicate that the uptake of peptides is the rate-limiting step in peptide hydrolysis. Utilization of leucyl-leucine by non-growing cells is competitively inhibited by the structurally related dipeptide alanyl-alanine. After hydrolysis of peptides, the amino acids are released into the medium and only a small fraction is accumulated and/or incorporated. This hydrolysis is independent of the synthesis of proteases indicating that the synthesis of proteases and peptidases are regulated differently. The specific growth rate of L. lactis ssp. cremoris E8 depends upon the amino acid source in the medium. No significant differences have been observed in the intracellular peptidase activities and the rates of peptide uptake between L. lactis ssp. cremoris E8 cells grown in different media, indicating that this growth rate is determined by the availability of amino acids in free amino acids or peptides.  相似文献   

17.
A mutant strain of Salmonella typhimurium that lacks two proline-specific peptidases (peptidases P and Q) could not complete the degradation of proline peptides formed as intermediates in starvation-induced protein breakdown. The wild-type strain produced free proline as the product of degradation of proline-labeled proteins. The pepP pepQ mutant, however, produced a mixture of small proline peptides. In the absence of peptidase Q only, peptidase P could complete the degradation of most of the proline peptide intermediates formed. In the absence of peptidase P only, about 50% of the proline-labeled, acid-soluble products were proline peptides. These results are consistent with in vitro specificity data indicating that peptidase Q hydrolyzes X-Pro dipeptides only, whereas peptidase P attacks both X-Pro dipeptides and longer peptides with X-Pro at their N-termini. A mutant strain lacking four broad-specificity peptidases (peptidases N, A, B, and D), but containing peptidases P and Q, also produced proline peptides as products of protein breakdown. This observation suggests that broad-specificity peptidases are required to generate the X-Pro substrates of peptidases P and Q. A strain lacking six peptidases (N, A, B, D, P, and Q) was constructed and produced less free proline from protein breakdown than either the pepP pepQ strain or the pepN pepA pepB pepD strain. These observations suggest that the degradation of peptide intermediates involves the sequential removal of N-terminal amino acids and requires both broad-specificity aminopeptidases (peptidases N, A, and B) and the X-Pro-specific aminopeptidase, peptidase P.  相似文献   

18.
Peptidase-deficient mutants of Escherichia coli.   总被引:16,自引:11,他引:5  
Mutant derivatives of Escherichia coli K-12 deficient in several peptidases have been obtained. Mutants lacking a naphthylamidase, peptidase N, were isolated by screening for colonies unable to hydrolyze L-alanine beta-naphthylamide. Other mutants were isolated using positive selections for resistance to valine peptides. Mutants lacking peptidase A, a broad-specificity aminopeptidase, were obtained by selection for resistance to L-valyl-L-leucine amide. Mutants lacking a dipeptidase, peptidase D, were isolated from a pepN pepA strain by selection for resistance to L-valyl-glycine. Starting with a pepN pepA pepD strain, selection for resistance to L-valyl-glycyl-glycine or several other valine peptides produced mutants deficient in another aminopeptidase, peptidase B. Mutants resistant to L-valyl-L-proline lack peptidase Q, an activity capable of rapid hydrolysis of X-proline dipeptides. Using these selection procedures, a strain (CM89) lacking five different peptidases has been isolated. Although still sensitive to valine, this strain is resistant to a variety of valine di- and tripeptides. The ability of this strain to use peptides as sources of amino acids is much more restricted than that of wild-type E. coli strains. Strains containing only one of the five peptidases missing in CM89 have been constructed by transduction. The peptide utilization profiles of these strains show that each of the five peptidases can function during growth in the catabolism of peptides.  相似文献   

19.
Latices from Asclepias spp are used in wound healing and the treatment of some digestive disorders. These pharmacological actions have been attributed to the presence of cysteine proteases in these milky latices. Asclepias curassavica (Asclepiadaceae), “scarlet milkweed” is a perennial subshrub native to South America. In the current paper we report a new approach directed at the selective biochemical and molecular characterization of asclepain cI (acI) and asclepain cII (acII), the enzymes responsible for the proteolytic activity of the scarlet milkweed latex. SDS-PAGE spots of both purified peptidases were digested with trypsin and Peptide Mass Fingerprints (PMFs) obtained showed no equivalent peptides. No identification was possible by MASCOT search due to the paucity of information concerning Asclepiadaceae latex cysteine proteinases available in databases. From total RNA extracted from latex samples, cDNA of both peptidases was obtained by RT-PCR using degenerate primers encoding Asclepiadaceae cysteine peptidase conserved domains. Theoretical PMFs of partial polypeptide sequences obtained by cloning (186 and 185 amino acids) were compared with empirical PMFs, confirming that the sequences of 186 and 185 amino acids correspond to acI and acII, respectively. N-terminal sequences of acI and acII, characterized by Edman sequencing, were overlapped with those coming from the cDNA to obtain the full-length sequence of both mature peptidases (212 and 211 residues respectively). Alignment and phylogenetic analysis confirmed that acI and acII belong to the subfamily C1A forming a new group of papain-like cysteine peptidases together with asclepain f from Asclepias fruticosa. We conclude that PMF could be adopted as an excellent tool to differentiate, in a fast and unequivocal way, peptidases with very similar physicochemical and functional properties, with advantages over other conventional methods (for instance enzyme kinetics) that are time consuming and afford less reliable results.  相似文献   

20.
To examine the contribution of peptidases to the growth of lactococcus lactis in milk, 16 single- and multiple-deletion mutants were constructed. In successive rounds of chromosomal gene replacement mutagenesis, up to all five of the following peptidase genes were inactivated (fivefold mutant): pepX, pepO, pepT, pepC, and pepN. Multiple mutations led to slower growth rates in milk, the general trend being that growth rates decreased when more peptidases were inactivated. The fivefold mutant grew more than 10 times more slowly in milk than the wild-type strain. In one of the fourfold mutants and in the fivefold mutant, the intracellular pools of amino acids were lower than those of the wild type, whereas peptides had accumulated inside the cell. No significant differences in the activities of the cell envelope-associated proteinase and of the oligopeptide transport system were observed. Also, the expression of the peptidases still present in the various mutants was not detectably affected. Thus, the lower growth rates can directly be attributed to the inability of the mutants to degrade casein-derived peptides. These results supply the first direct evidence for the functioning of lactococcal peptidases in the degradation of milk proteins. Furthermore, the study provides critical information about the relative importance of the peptidases for growth in milk, the order of events in the proteolytic pathway, and the regulation of its individual components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号