首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA of cotton, Gossypium hirsutum, has been characterized as to spectral characteristics, buoyant density in CsCl, base composition, and genetic complexity. The haploid genome size is found to bo 0.795 pg DNA/cell. However, the amount of DNA per cell in the cotyledons increases during embryogenesis to an average ploidy level of 12N in the mature seed cotyledons. Reassociation kinetics indicate that this increase is due to endoreduplication of the entire genome.Non-repetitive deoxynucleotide sequences account for approximately 60.5% of the cotton genome (C0t12pure5 = 437); highly repetitive sequences (> 10,000 repetition frequency) constitute about 7.7% of the genome. (C0t12pure = 4.6 × 10?4) and intermediately repetitive sequences constitute the remaining 27% of the genome (C0t12pure = 1.46). Hybridization of 125I-labeled cytoplasmic ribosomal RNA to whole-cell DNA on filters and in solution indicate approximately 300 to 350 copies of the rRNA cistrons per haploid genome.The interspersion of repetitive sequences that reassociate between C0t values of 0.1 and 50 with non-repetitive sequences of the cotton genome has been examined by determining the reassociation kinetics of DNA of varying fragment lengths and by the electron microscopy of reassociated molecules. About 60% of the genome consists of non-repetitive regions that average 1800 base-pairs interpersed with repetitive sequences that average 1250 base-pairs. Approximately 20% of the genome may be involved in a longer period interspersion pattern containing non-repetitive sequences of approximately 4000 base-pairs between repetitive sequences. Most of the individual sequences of the interspersed repetitive component are much smaller than the mass average size, containing between 200 and 800 base-pairs. Sequence divergence is evident among the members of this component.Highly repetitive sequence elements that are reassociated by a C0t value of 0.1 average 2500 base-pairs in length, appear to have highly divergent regions and do not appear to be highly clustered. A portion of this highly repetitive component reassociates by C0t = 10?4, zero-time binding DNA, and accounts for less than 3% of the genome. At least a third of these sequences appear by electron microscopy to be intramolecular duplexes (palindromes) of 150 to 200 base-pairs and to occur in clusters.  相似文献   

2.
3.
N-Phenylhydroxylamine is oxidized in aqueous phosphate buffer to nitrosobenzene, nitrobenzene, and azoxybenzene. Degradation is O2 dependent and shows general catalysis by H2PO4? (k1 = 2.3 M?2 sec?1) and PO4?3 (k2 = 2.3 × 105M?2 sec?1) or kinetically equivalent terms. Evidence is presented suggesting the intermediacy of a highly reactive species leading to these products.  相似文献   

4.
Using 1-6-12 empirical functions with a solvent-averaged electrostatic contribution qIqjε(rIj) × rIj and electrostatic potentials from CNDO-type wavefunctions, the development of specific interactions of ions visualized by the molecular electrostatic potential of PO4-group containing molecules was studied. Going from single molecules to monolayers made up of 37 head groups of phosphatidylcholine (PC) or phosphatidylethanolamine (PE) for quantum-chemical calculations, or of 23 head groups for empirical calculations we found decreasing potential minima. Only the inclusion of the screening effect of water, simulated by a distance dependent dielectric constant, ε(r), gives an explanation of stereospecific interactions of model membranes with ions. This finding can be compared with results of simulation calculations on water structure above a PE head group layer.  相似文献   

5.
The molecular weight of Na- and K-hyaluronate has been determined by low angle laser light scattering (LALLS) technique. Two preparations of hyaluronate from rooster comb (Mw= 0.9 × 106 and 4 × 106) were investigated. The LALLS was carried out both in a static mode and on the effluent from a column filled with porous gel. In contrast to Sheehan et al.1, no significant difference was found in the molecular weight of viscosity of Na- and K-hyaluronate in 2.0 M salt solutions  相似文献   

6.
Insulin binding to human fetal plasma liver membranes was studied in preparations segregated into three pools according to length of gestation: 15–18 weeks (Pool A), 19–25 weeks (Pool B), and 26–31 weeks (Pool C). Receptor numbers, calculated by extrapolation of Scatchard plots to the X axis, increased from 25 × 1010 sites per 100 μg protein in the youngest group (Pool A) to 46 × 1010 sites per 100 μg protein in Pool B. No further increase in receptor number was seen in Pool C. The affinity constant for insulin at tracer concentrations, Ke (“empty site”), was 1.53 × 108M?1 in Pool A and was only slightly higher than Kf (“filled site”). Ke was higher in Pool B, 1.75 × 108M?1, and in Pool C reached a value of 5.63 × 108M?1. In Pool C Kf was 2.3 × 108M?1. Insulin binding of liver plasma membranes from rat fetuses aged 14, 16, 18, and 21 (term) days and adults was also studied. Maximum binding capacity tended to increase with gestational age and was 130 × 1010 sites per 100 μg protein at term, which was in excess of that found in adult rats (89–90 × 1010). In addition, Ke increased from 0.75 × 108M?1 at 14 days to 3.02 × 108M?1 at term, a value higher than that found in pregnant and nonpregnant adults. Dissociation of insulin in the presence of high concentrations of insulin was significantly enhanced in tissues from 18-day and term fetuses and adults, but not in membranes from fetal rats aged 14 and 16 days. These data appear to indicate that site-site interactions are not present in early fetal existence. These changes in insulin binding with increased length of gestation are not ascribable to changes in relative proportions of hematopoietic and parenchymal tissue. Human fetal plasma liver membranes demonstrated elevated insulin binding with increased gestational age, but comparison of fetal and adult liver could not be done. However, newborn human infants have been shown to have a higher capacity for binding insulin to circulating monocytes than adults. Also, human fetuses apparently lack the capability to diminish monocyte receptors in the presence of hyperinsulinemia. These experiments show that an increase in insulin receptor binding capacity and affinity also occurs in the liver of the rat fetus at term as compared to the adult rat. The reasons and mechanisms underlying enhanced capacity for insulin binding by fetal and newborn members of human and rodent species are not known.  相似文献   

7.
The association constant, KA, for myosin subfragment-1 binding to actin was measured as a function of ionic strength [KCl, LiCl, and tetramethylammonium chloride (TMAC)]and temperature by the method of time-resolved fluorescence depolarization. The following thermodynamic values were obtained from solutions of 0.20 × 10?6m S-1, 1.00 × 10?6m actin in 0.15 m KCl, pH 7.0, at 25 °C: ΔG ° = ?39 ± 1 kJ M?1, ΔH0 = 44 ± 2 kJ M?1 and ΔS0 = 0.28 ± 0.01 kJ M?10K?1. For measurements in KCl (0.05 to 0.60 m), In Ka = ?8.36 (KCl)12. Thus, the binding is endothermic and strongly inhibited by high ionic strength. When KCl was replaced by LiCl or TMAC the ionic effects on the binding were cation specific. The nature of actin-(S-1) binding in the rigor state is discussed in terms of these results.  相似文献   

8.
9.
Presteady-state kinetic studies of α-chymotrypsin-catalyzed hydrolysis of a specific chromophoric substrate, N-(2-furyl)acryloyl-l-tryptophan methyl ester, were performed by using a stopped-flow apparatus both under [E]0 ? [S]0 and [S]0 ? [E]0 conditions in the pH range of 5–9, at 25 °C. The results were accounted for in terms of the three-step mechanism involving enzyme-substrate complex (E · S) and acylated enzyme (ES′); no other intermediate was observed. This substrate was shown to react very efficiently, i.e., the maximum of the second-order acylation rate constant (k2Ks)max = 4.2 × 107 M?1 s?1. The limiting values of Ks′ (dissociation constant of E · S), K2 (acylation rate) and k3 (deacylation rate) were obtained from the pH profiles of these parameters to be 0.6 ± 0.2 × 10?5 m, 360 ± 15 s?1 and 29.3 ± 0.8 s?1, respectively. Likewise small values were observed for Ki of N-(2-furyl)-acryloyl-l-tryptophan and N-(2-furyl)acryloyl-d-tryptophan methyl ester and Km of N-(2-furyl)acryloyl-l-tryptophan amide. The strong affinities observed may be due to intense interaction of β-(2-furyl)acryloyl group with a secondary binding site of the enzyme. This interaction led to a k?1k2 value lower than unity, i.e., the rate-limiting process of the acylation was the association, even with the relatively low k2 value of this methyl ester substrate, compared to those proposed for labile p-nitrophenyl esters.  相似文献   

10.
《FEBS letters》1985,193(2):185-188
The enzyme 6-phosphogluconolactonase (EC 3.1.1.31) is present at high levels in Zymomonas mobilis cells. A simple procedure for its isolation involving dye-ligand chromatography and gel filtration has resulted in a 500-fold purification with high recovery. The purified enzyme is a monomer of 26 kDa, and has a high catalytic efficiency with kcatKm of 9 × 107 M−1 s−1 at 25° C. Two assay procedures for the enzyme are compared, and a simple method of obtaining a solution of 6-phosphoglucono-δ-lactone relatively free of other metabolites is presented.  相似文献   

11.
Precipitation of human fibrinogen in 0.15 m NaCl occurred at pH 7.4 (Tris-HCl buffer) when ZnCl2, CuCl2, NiCl2, or CoCl2 were added beyond their respective critical concentrations. The critical concentrations were about 4 × 10?5m ZnCl2, 6 × 10?5m CuCl2, 3 × 10?4m NiCl2 and 1 × 10?3m CoCl2. At pH 5.8 2-(N-morpholino)-ethane sulphonic acid buffer, the critical concentrations were found only for CuCl2 and ZnCl2, and were about 3 × 10?5and 3 × 10?4m, respectively. CaCl2 and MgCl2 were not effective up to 1 × 10?2and 2 × 10?2m at pH 7.4 and 5.8, respectively. At pH 7.4, precipitation was better in 0.015 m NaCl than in 0.15 m NaCl for both CuCl2 and ZnCl2. Little or no conformational change was indicated on binding Cu2+ ions. The fluorescence of tryptophan was quenched only by CuCl2, while other metal ions (ZnCl2, NiCl2, CoCl2 and CaCl2) were ineffective as quenchers.  相似文献   

12.
The observed equilibrium constants (Kobs) for the l-phosphoserine phosphatase reaction [EC 3.1.3.3] have been determined under physiological conditions of temperature (38 °C) and ionic strength (0.25 m) and physiological ranges of pH and free [Mg2+]. Using Σ and square brackets to indicate total concentrations Kobs = Σ L-serine][Σ Pi]Σ L-phosphoserine]H2O], K = L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O]. The value of Kobs has been found to be relatively sensitive to pH. At 38 °C, K+] = 0.2 m and free [Mg2+] = 0; Kobs = 80.6 m at pH 6.5, 52.7 m at pH 7.0 [ΔGobs0 = ?10.2 kJ/mol (?2.45 kcal/mol)], and 44.0 m at pH 8.0 ([H2O] = 1). The effect of the free [Mg2+] on Kobs was relatively slight; at pH 7.0 ([K+] = 0.2 m) Kobs = 52.0 m at free [Mg2+] = 10?3, m and 47.8 m at free [Mg2+] = 10?2, m. Kobs was insignificantly affected by variations in ionic strength (0.12–1.0 m) or temperature (4–43 °C) at pH 7.0. The value of K at 38 °C and I = 0.25 m has been calculated to be 34.2 ± 0.5 m [ΔGobs0 = ?9.12 kJ/mol (?2.18 kcal/ mol)]([H2O] = 1). The K for the phosphoserine phosphatase reaction has been combined with the K for the reaction of inorganic pyrophosphatase [EC 3.6.1.1] previously estimated under the same physiological conditions to calculate a value of 2.04 × 104, m [ΔGobs0 = ?28.0 kJ/mol (?6.69 kcal/mol)] for the K of the pyrophosphate:l-serine phosphotransferase [EC 2.7.1.80] reaction. Kobs = [Σ L-serine][Σ Pi][Σ L-phosphoserine][H2O], K = [L-H · serine±]HPO42?][L-H · phosphoserine2?]H2O. Values of Kobs for this reaction at 38 °C, pH 7.0, and I = 0.25 m are very sensitive to the free [Mg2+], being calculated to be 668 [ΔGobs0 = ?16.8 kJ/mol (?4.02 kcal/mol)] at free [Mg2+] = 0; 111 [ΔGobs0 = ?12.2 kJ/mol (?2.91 kcal/mol)] at free [Mg2+] = 10?3, m; and 9.1 [ΔGobs0 = ?5.7 kJ/mol (?1.4 kcal/mol) at free [Mg2+] = 10?2, m). Kobs for this reaction is also sensitive to pH. At pH 8.0 the corresponding values of Kobs are 4000 [ΔGobs0 = ?21.4 kJ/mol (?5.12 kcal/mol)] at free [Mg2+] = 0; and 97.4 [ΔGobs0 = ?11.8 kJ/ mol (?2.83 kcal/mol)] at free [Mg2+] = 10?3, m. Combining Kobs for the l-phosphoserine phosphatase reaction with Kobs for the reactions of d-3-phosphoglycerate dehydrogenase [EC 1.1.1.95] and l-phosphoserine aminotransferase [EC 2.6.1.52] previously determined under the same physiological conditions has allowed the calculation of Kobs for the overall biosynthesis of l-serine from d-3-phosphoglycerate. Kobs = [Σ L-serine][Σ NADH][Σ Pi][Σ α-ketoglutarate][Σ d-3-phosphoglycerate][Σ NAD+][Σ L-glutamat0] The value of Kobs for these combined reactions at 38 °C, pH 7.0, and I = 0.25 m (K+ as the monovalent cation) is 1.34 × 10?2, m at free [Mg2+] = 0 and 1.27 × 10?2, m at free [Mg2+] = 10?3, m.  相似文献   

13.
The following peptides were synthesized by classical methods in solution: Ac-Gly-Gly- Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (A), Ac-Ala-Glu-Gly-Gly-Gly-Val- Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (B), and Ac-Phe-Leu-Ala-Glu-Gly-Gly- Gly-Val-Arg-Gly-Pro-Arg-Val-Val-Glu-Arg-NHCH3 (C). The rates of hydrolysis of the Arg-Gly bond of these three peptides by thrombin were measured, and the values of kcatKm were found to be 0.05 × 10?7 (A), 0.02 × 10?7 (B), and 1.6 × 10?7 (C) [(NIH units/ liter)s]?1. The value ofkcatKm for peptide C is less than 1% of that for fibrinogen [although the value of kcat itself, for peptide C (but not for A or B), is comparable to that for fibrinogen]. These results indicate that phenylanine and leucine at positions P9 and P8, respectively, play a key role in the reaction of thrombin with fibrinogen. The data also show that factors outside of the 16 residues of peptide C are important in determining the rate of hydrolysis of fibrogen by thrombin.  相似文献   

14.
15.
The micellar properties of gangliosides in water solutions were investigated by quasielastic light scattering measurements. GM1 and GD1a gangliosides were isolated from calf brain, purified to more than 99% and dissolved in 0.025 M Tris—HCI buffer (pH 6.8) at 37°C. The average intensity of scattered light and the intensity correlation function were measured by an apparatus including a 5145 Å argon laser and a real-time digital correlator. The scattered intensity data allowed the derivation of an upper limit to the critical micelle concentration (c0) and the evaluation of the molecular weight (M) of the micelle. The intensity correlation function gave the diffusion coefficient D, and hence the hydrodynamic radius RH, and also contained information on the polydispersity of the sample. We find co < 1 × 10?6 M for both GM1 and GD1a, M = 532 000 ± 50 000 and RH = 63.9 ± 2 A? for GM1, and M = 417 000 ± 40 000 and RH = 59.5 ± 2 A? for GD1a. The mixture 3:1 of the two gangliosides gave intermediate values for all examined parameters. The presence of cations, within the physiological concentration range. and, in particular of Ca2+, did not influence significantly the values of co and the main features of the micelle.  相似文献   

16.
Several rate constants for one-electron reduction of cytochrome P450 are more rapid in the absence than in the presence of the specific substrate. The respective values for methyl viologen, nicotinamide adenine dinucleotide and the 1-methyl-4-(and -3-)carbamidopyridinium radicals are 2.6, 3.4, 6 and 35 × 107 M?1 s?1 without camphor, and 0.15, 0.1, 1.8 and 110 × 107 M?1 s?1 for the camphor complex. Hydrated electrons react with cytochrome P450 with a rate constant of 3.0 × 1010 M?1 s?1 whether camphor is bound or not, but little of the reduction takes place at the haem iron. No reduction of the haem iron by CO2?- or O2?- could be detected, whether camphor is bound or not.  相似文献   

17.
18.
A capacitor microphone was used to measure the enthalpy and volume changes that accompany the electron transfer reactions, PQAhv P+Q?A and PQAQBhv P+QAQ?B, following flash excitation of photosynthetic reaction centers isolated from Rhodopseudomonas sphaeroides. P is a bacteriochlorophyll dimer (P-870), and QA and QB are ubiquinones. In reaction centers containing only QA, the enthalpy of P+Q?A is very close to that of the PQA ground state (ΔHr = 0.05 ± 0.03 eV). The free energy of about 0.65 eV that is captured in the photochemical reaction evidently takes the form of a substantial entropy decrease. In contrast, the formation of P+QAQ?B in reaction centers containing both quinones has a ΔHr of 0.32 ± 0.02 eV. The entropy change must be near zero in this case. In the presence of o-phenanthroline, which blocks electron transfer between Q?A and QB, ΔHr for forming P+Q?AQB is 0.13 ± 0.03 eV. The influence of flash-induced proton uptake on the results was investigated, and the ΔHr values given above were measured under conditions that minimized this influence. Although the reductions of QA and QB involve very different changes in enthalpy and entropy, both reactions are accompanied by a similar volume decrease of about 20 ml/mol. The contraction probably reflects electrostriction caused by the charges on P+ and Q?A or Q?B.  相似文献   

19.
Substitution of the active site zinc ion of carboxypeptidase A by cadmium yields an enzyme inactive towards ordinary peptide substrates. However, a substrate analog (BzGlyNHCH2CSPheOH) containing a thioamide linkage at the scissile position is cleaved to the thioacid. The kinetic parameters and their pH dependencies are kcatKm = 5.04 × 104 min?1M?1, decreasing with either acid or base (PKE1 = 5.64, pKE2 = 9.55), and kcat = 1.02 × 102 min?1, decreasing with acid (pKES = 6.61). The thiopeptide is less efficiently cleaved by native (zinc) carboxypeptidase A. This cadmium-sulfur synergism supports a mechanism wherein the substrate amide is activated by metal ion coordination to its (thio) carbonyl.  相似文献   

20.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号