首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Two acidic proteins from the 50 S subunit of Bacillus stearothermophilus ribosomes, namely B-L13 (homologous to Escherichia coli protein L7L12) and B-L8, form a complex. Radioactive B-L13, added to ribosomes before dissociation, does not appear in the complex after electrophoresis, so the (B-L13 · B-L8) complex must exist in the ribosome before dissociation. Digestion of B. stearothermophilus ribosomes with polyacrylamide-bound trypsin causes the appearance of new B-L8 and B-L13 spots on two-dimensional polyacrylamide gel electrophoresis, in a pattern which suggests that single molecules of B-L13 are being sequentially cleaved from a four-to-one complex of B-L13 and B-L8.  相似文献   

2.
When 50 S subunits from Escherichia coli ribosomes were incubated with 1·3 m-LiC1 the resulting 1·3c core was inactive both with respect to peptidyltransferase activity and erythromycin binding (tested by equilibrium dialysis). Reconstitution experiments with purified proteins from the corresponding split fraction SP1·3 revealed that only L16 (reconstituted with the 1·3c core in a tenfold excess) could restore high activity in both systems.When 30 out of the 34 isolated ribosomal proteins were tested directly for binding or erythromycin, L15 was able to bind the drug, in contrast to all other proteins including L16. Total reconstitution experiments with the 50 S subunit demonstrated an absolute requirement for L15 and L16 with respect to both drug binding and peptidyltransferase activity.  相似文献   

3.
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex.  相似文献   

4.
5.
Six 50 S ribosomal subunit proteins, each unable to interact independently with the 23 S RNA, were shown to associate specifically with ribonucleoprotein complexes consisting of intact 23 S RNA, or fragments derived from it, and one or more RNA-binding proteins. In particular, L21 and L22 depend for attachment upon L20 and L24, respectively; L5, L10 and L11 interact individually with complexes containing L2 and L16; and one or both proteins of the L17L27 mixture are stimulated to bind in the presence of L1, L3, L6, L13 and L23. Moreover, L14 alone was found to interact with a fragment from the 3′ end of the 23 S RNA, even though it cannot bind to 23 S RNA. By correlating the data reported here with the findings of others, it has been possible to formulate a partial in vitro assembly map of the Escherichia coli 50 S subunit encompassing both the 5 S and 23 S RNAs as well as 21 of the 34 subunit proteins.  相似文献   

6.
S R Fahnestock 《Biochemistry》1975,14(24):5321-5327
The functional role of the Bacillus stearothermophilus 50S ribosomal protein B-L3 (probably homologous to the Escherichia coli protein L2) was examined by chemical modification. The complex [B-L3-23S RNA] was photooxidized in the presence of rose bengal and the modified protein incorporated by reconstitution into 50S ribosomal subunits containing all other unmodified components. Particles containing photooxidized B-L3 are defective in several functional assays, including (1) poly(U)-directed poly(Phe) synthesis, (2) peptidyltransferase activity, (3) ability to associate with a [30S-poly(U)-Phe-tRNA] complex, and (4) binding of elongation factor G and GTP. The rates of loss of the partial functional activities during photooxidation of B-L3 indicate that at least two independent inactivating events are occurring, a faster one, involving oxidation of one or more histidine residues, affecting peptidyltransferase and subunit association activities and a slower one affecting EF-G binding. Therefore the protein B-L3 has one or more histidine residues which are essential for peptidyltransferase and subunit association, and another residue which is essential for EF-G-GTP binding. B-L3 may be the ribosomal peptidyltransferase protein, or a part of the active site, and may contribute functional groups to the other active sites as well.  相似文献   

7.
Translating 70 S ribosomes of Escherichia coli either in the pre-translocation or in the post-translocation state have been prepared by using the cell-free translation system in poly(U)—S—S—Sepharose columns [Methods Enzymol. (1979) 59, 382–398]. Electron microscopy study of the preparations has demonstrated that: (1) the mutual orientation of the ribosomal subunits in the translating ribosomes is the same as proposed by Lake for routine 30 S·50 S couples [J. Mol. Biol. (1976) 105, 111–130]; (2) the L7/L12 stalk of the 50 S subunit sticks out from the 70 S particle and does not join the 30 S subunit; (3) pre-translocation and post-translocation state ribosomes do not differ in mutual orientation of the subunits and in the position of the L7/L12 stalk, within the limits of electron microscopy resolution.  相似文献   

8.
Summary The surface topography of the intact 70S ribosome and free 30S and 50S subunits from Bacillus stearothermophilus strain 2184 was investigated by lactoperoxidase-catalyzed iodination. Two-dimensional polyacrylamide gel electrophoresis was employed to separate ribosomal proteins for analysis of their reactivity. Free 50S subunits incorporated about 18% more 125I than did 50S subunits derived from 70S ribosomes, whereas free 30S subunits and 30S subunits derived from 70S ribosomes incorporated similar amounts of 125I. Iodinated 70S ribosomes and subunits retained 62–78% of the protein synthesis activity of untreated particles and sedimentation profiles showed no gross conformational changes due to iodination. The proteins most reactive to enzymatic iodination were S4, S7, S10 and Sa of the small subunit and L2, L4, L5/9, L6 and L36 of the large subunit. Proteins S2, S3, S7, S13, Sa, L5/9, L10, L11 and L24/25 were labeled substantially more in the free subunits than in the 70S ribosome. Other proteins, including S5, S9, S12, S15/16, S18 and L36 were more extensively iodinated in the 70S ribosome than in the free subunits. The locations of tyrosine residues in some homologus ribosomal proteins from B. stearothermophilus and E. coli are compared.  相似文献   

9.
Summary Expression of resistance to erythromycin in Escherichia coli, caused by an altered L4 protein in the 50S ribosomal subunit, can be masked when two additional ribosomal mutations affecting the 30S proteins S5 and S12 are introduced into the strain (Saltzman, Brown, and Apirion, 1974). Ribosomes from such strains bind erythromycin to the same extent as ribosomes from erythromycin sensitive parental strains (Apirion and Saltzman, 1974).Among mutants isolated for the reappearance of erythromycin resistance, kasugamycin resistant mutants were found. One such mutant was analysed and found to be due to undermethylation of the rRNA. The ribosomes of this strain do not bind erythromycin, thus there is a complete correlation between phenotype of cells with respect to erythromycin resistance and binding of erythromycin to ribosomes.Furthermore, by separating the ribosomal subunits we showed that 50S ribosomes bind or do not bind erythromycin according to their L4 protein; 50S with normal L4 bind and 50S with altered L4 do not bind erythromycin. However, the 30s ribosomes with altered S5 and S12 can restore binding in resistant 50S ribosomes while the 30S ribosomes in which the rRNA also became undermethylated did not allow erythromycin binding to occur.Thus, evidence for an intimate functional relationship between 30S and 50S ribosomal elements in the function of the ribosome could be demonstrated. These functional interrelationships concerns four ribosomal components, two proteins from the 30S ribosomal subunit, S5, and S12, one protein from the 50S subunit L4, and 16S rRNA.  相似文献   

10.
The stalk protein L12 is the only multiple component in 50S ribosomal subunit. In Escherichia coli, two L12 dimers bind to the C-terminal domain of L10 to form a pentameric complex, L10[(L12)(2)](2), while the recent X-ray crystallographic study and tandem MS analyses revealed the presence of a heptameric complex, L10[(L12)(2)](3), in some thermophilic bacteria. We here characterized the complex of Thermus thermophilus (Tt-) L10 and Tt-L12 stalk proteins by biochemical approaches using C-terminally truncated variants of Tt-L10. The C-terminal 44-residues removal (Delta44) resulted in complete loss of interactions with Tt-L12. Quantitative analysis of Tt-L12 assembled onto E. coli 50S core particles, together with Tt-L10 variants, indicated that the wild-type, Delta13 and Delta23 variants bound three, two and one Tt-L12 dimers, respectively. The hybrid ribosomes that contained the T. thermophilus proteins were highly accessible to E. coli elongation factors. The progressive removal of Tt-L12 dimers caused a stepwise reduction of ribosomal activities, which suggested that each individual stalk dimer contributed to ribosomal function. Interestingly, the hybrid ribosomes showed higher EF-G-dependent GTPase activity than E. coli ribosomes, even when two or one Tt-L12 dimer. This result seems to be due to a structural characteristic of Tt-L12 dimer.  相似文献   

11.
Purified 50 S ribosomal subunits were found to contain significant amounts of protein coincident with the 30 S proteins S9 and/or S11 on two-dimensional polyacrylamide/urea electropherographs. Peptide mapping established that the protein was largely S9 with smaller amounts of S11. Proteins S5 and L6 were nearly coincident on the two-dimensional polyacrylamide/urea electropherographs. Peptide maps of material from the L6 spot obtained from purified 50 S subunits showed the presence of significant amounts of the peptides corresponding to S5. Experiments in which 35S-labelled 30 S subunits and non-radioactive 50 S subunits were reassociated to form 70 S ribosomes showed that some radioactive 30 S protein was transferred to the 50 S subunit. Most of the transferred radioactivity was associated with two proteins, S9 and S5. Sulfhydryl groups were added to the 50 S subunit by amidination with 2-iminothiolane (methyl 4-mercaptobutyrimidate). These were oxidized to form disulfide linkages, some of which crosslinked different proteins of the intact 50 S ribosomal subunit. Protein dimers were partially fractionated by sequential salt extraction and then by electrophoresis of each fraction in polyacrylamide gels containing urea. Slices of the gel were analysed by two-dimensional polyacrylamide/sodium dodecyl sulfate diagonal gel electrophoresis. Final identification of the constituent proteins in each dimer by two-dimensional polyacrylamide/urea gel electrophoresis showed that 50 S proteins L5 and L27 were crosslinked to S9. The evidence suggests that proteins S5, S9, S11, L5 and L27 are located at the interface region of the 70 S ribosome.  相似文献   

12.
The binding of the initiator tRNA Met-tRNAf, and of acetylphenylalanyl-tRNA, has been examined with rat liver 40S subunits derived from 80S ribosomes by dissociation with native 40S subunits sedimented from the postmicrosomal fraction and with native 40S subunits extracted with high salt-containing solutions. Binding of Met-tRNAf and acetylphenylalanyl-tRNA to derived and to salt-extracted native 40S subunits is observed in the presence of the appropriate polynucleotide template and a highly purified binding factor obtain from the soluble fraction of rat liver homogenates (R.L. IF-1). Native 40S subunits bind acetylphenylalanyl-tRNA in a reaction that requires poly(U) but not exogenous binding factor; however, Met-tRNAf is not bound to native subunits, even when supplemented with the soluble binding factor, or under conditions where factor-independent, high Mg2+-stimulated binding is observed with the derived and the salt-washed native 40S subunits. The extract obtained from native 40S subunits promotes the binding of acetylphenylalanyl-tRNA but not Met-tRNAf to derived and to salt-extracted native subunits. The addition of native 40S extract to incubations containing R.L. IF-1, Met-tRNAf, and derived 40S subunits, inhibits the formation of 40S-Met-tRNAf complex. These data suggest that the binding activity that is specific for 40S subunits and initiator tRNA, and an activity that inhibits the interaction with Met-tRNAf specifically, are both associated with native 40S subunits, and can be extracted from them by treatment with high salt-containing solutions. Derived 40S subunits react quantitatively with 60S particles to form 80S ribosomes which do not bind acetylphenylalanyl-tRNA with binding factor R.L. IF-1. Native 40S subunits react only partly with 60S subunits; about half of the native 40S subunit population forms 80S ribosomes which do not subsequently bind acetylphenylalanyl-tRNA; the remaining native 40S subunits which do not react with 60S particles bind acetylphenylalanyl-tRNA but to a lesser extent. When preformed native 40S-acetylphenylalanyl-tRNA complex is incubated with 60S subunits, about half of the subunits form an 80S-acetylphenylalanyl-tRNA complex, while the rest remains as 40S-acetylphenylalanyl-tRNA. The addition of native 40S subunit salt extract to incubations containing preformed 80S ribosomes dissociates the particles to subunits. These data suggest that in addition to the initiator tRNA binding activity and the activity that inhibits Met-tRNAf interaction, part of the native 40S subunit population also contains an activity that dissociates 80S ribosomes.  相似文献   

13.
Antibiotics of the neomycin, kanamycin and gentamicin, but not streptomycin, groups stabilize the GDP·elongation factor (EF) G·50S subunit·fusidic acid complex. Treatment of 30S subunits, but not of 50S subunits, with neomycin B or kanamycin B, followed by removal of excess unbound antibiotic and supplementation with untreated complementary subunits, promotes poly(U)-dependent binding of Tyr-tRNA to the reassociated ribosomes (misreading). A similar treatment of either ribosomal subunit with neomycin B inhibits the EF-G-dependent translocation of Ac-Phe-tRNA. These results suggest that interaction of neomycin B and related antibiotics with the 30S subunit induces misreading and inhibits translocation, and interaction with the 50S subunit stabilizes EF-G on the ribosome and also inhibits translocation.  相似文献   

14.
Ribosomal stalk is involved in the formation of the so-called “GTPase-associated site” and plays a key role in the interaction of ribosome with translation factors and in the control of translation accuracy. The stalk is formed by two or three copies of the L7/L12 dimer bound to the C-terminal tail of protein L10. The N-terminal domain of L10 binds to a segment of domain II of 23S rRNA near the binding site for ribosomal protein L11. The structure of bacterial L10 in complex with three L7/L12 N-terminal dimers has been determined in the isolated state, and the structure of the first third of archaeal L10 bound to domain II of 23S rRNA has been solved within the Haloarcula marismortui 50S ribosomal subunit. A close structural similarity between the RNA-binding domain of archaeal L10 and the RNA-binding domain of bacterial L10 has been demonstrated. In this work, a long RNA-binding N-terminal fragment of L10 from Methanococcus jannaschii has been isolated and crystallized. The crystal structure of this fragment (which encompasses two-thirds of the protein) has been solved at 1.6 Å resolution. The model presented shows the structure of the RNA-binding domain and the structure of the adjacent domain that exist in archaeal L10 and eukaryotic P0 proteins only. Furthermore, our model incorporated into the structure of the H. marismortui 50S ribosomal subunit allows clarification of the structure of the archaeal ribosomal stalk base.  相似文献   

15.
Proteins occurring at, or near, the subunit interface of E. coli ribosomes   总被引:9,自引:0,他引:9  
Summary The identification of ribosomal proteins that occur at, or near, the subunit interface of the 30S and 50S subunits in the E. coli 70S ribosome was attempted by studying the effect of antibodies on the Mg++ dependent dissociation-association equilibrium of 70S ribosomes. Dissociated ribosomes were mixed with monovalent fragments of IgG antibodies (Fab's) specific for each ribosomal protein and then reassociated into intact 70S particles. Various degrees of inhibition of this reassociation were observed for proteins S9, S11, S12, S14, S20, L1, L6, L14, L15, L19, L20, L23, L26 and L27. A small amount of aggregation of 50S subunits was caused by IgG's specific for the proteins S9, S11, S12, S14 and S20 and purified 50S subunits. It was inferred that the presence of small amounts of these proteins on 50S subunits was compatible with their presence at the subunit interface. Finally, the capacity of proteins S11 and S12 to bind to 23S RNA was demonstrated.Paper No. 84 on Ribosomal Proteins. Preceding paper is by Rahmsdorf et al., Molec. gen. Genet. 127, 259–271 (1973).  相似文献   

16.
Slowly cooled cells of Streptomyces aureofaciens contained mainly tight-couple ribosomes. Maximum rate of polyphenylalanine synthesis on ribosomes of S. aureofaciens was observed at 40°C, while cultures grew optimally at 28°C. Ribosomes of S. aureofaciens differed from those of E. coli in the amount of poly(U) required for maximum synthetic activity. The polyphenylalanine-synthesizing activity of E. coli ribosomes was about 3-times higher than that of S. aureofaciens ribosomes. The addition of protein S1 of E. coli or the homologous protein from S. aureofaciens had no stimulatory effect on the translation of poly(U). In order to localize alteration(s) of S. aureofaciens ribosomes in the elongation step of polypeptide synthesis we developed an in vitro system derived from purified elongation factors and ribosomal subunits. The enzymatic binding of Phe-tRNA to ribosomes of S. aureofaciens was significantly lower than the binding to ribosomes of E. coli. This alteration was mainly connected with the function of S. aureofaciens 50 S subunits. These subunits were not deficient in their ability to associate with 30 S subunits or with protein SL5 which is homologous to L7/L12 of E. coli.  相似文献   

17.
In the present work, ribosomes assembled in bacterial cells in the absence of essential ribosomal protein L5 were obtained. After arresting L5 synthesis, Escherichia coli cells divide a limited number of times. During this time, accumulation of defective large ribosomal subunits occurs. These 45S particles lack most of the central protuberance (CP) components (5S rRNA and proteins L5, L16, L18, L25, L27, L31, L33 and L35) and are not able to associate with the small ribosomal subunit. At the same time, 5S rRNA is found in the cytoplasm in complex with ribosomal proteins L18 and L25 at quantities equal to the amount of ribosomes. Thus, it is the first demonstration that protein L5 plays a key role in formation of the CP during assembly of the large ribosomal subunit in the bacterial cell. A possible model for the CP assembly in vivo is discussed in view of the data obtained.  相似文献   

18.
Mutants of Escherichia coli lacking ribosomal protein L1   总被引:8,自引:0,他引:8  
Two independently isolated mutants of Escherichia coli, RD19 and MV17-10, that appeared to lack protein L1 on their ribosomes, as determined by two-dimensional gels, were subjected to a battery of immunological tests to find if L1 was indeed lacking. The tests involved Ouchterlony double diffusion, modified immunoelectrophoresis, dimer formation on sucrose gradients, and affinity chromatography. By all these criteria, protein L1 was missing from the ribosome in these mutants. Nor was any L1 cross-reacting material detectable in the supernatant. There was, however, a specific two- to fivefold increase in concentrations of protein L11 in the supernatants of the mutants, which was evidence that protein L1 acts as a feedback inhibitor of expression of the operon coding for the genes for proteins L11 and L1.Electron micrographs of ribosomes obtained from these mutants were indistinguishable from those of wild-type strains. 50 S ribosomal subunits from mutants RD19 and MV17-10 were reconstituted with purified L1 from wild-type and investigated by immunoelectron microscopy. The three-dimensional location of ribosomal protein L1 on the surface of the large subunit was determined. L1 is located on the wider lateral protuberance of the 50 S subunit. The position of protein L1 in 50 S subunits reconstituted from mutants RD19 and MV17-10 was indistinguishable from the position in subunits from wild-type.  相似文献   

19.
A new technique of atomic tritium bombardment has been used to study the surface topography of Escherichia coli ribosomes and ribosomal subunits. The technique provides for the labeling of proteins exposed on the surface of ribosomal particles, the extent of protein labeling being proportional to the degree of exposure. The following proteins were considerably tritiated in the 70S ribosomes: S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L1, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27. A conclusion is drawn that these proteins are exposed on the ribosome surface to an essentially greater extent than the others. Dissociation of 70S ribosomes into the ribosomal subunits by decreasing Mg2+ concentration does not lead to the exposure of additional ribosomal proteins. This implies that there are no proteins on the contacting surfaces of the subunits. However, if a mixture of subunits has been subjected to centrifugation in a low Mg2+ concentration at high concentrations of a monovalent cation, proteins S3, S5, S7, S14, S18 and L16 are more exposed on the surface of the isolated 30S and 50S subunits than in the subunit mixture or in the 70S ribosomes. The exposure of additional proteins is explained by distortion of the native quaternary structure of ribosomal subunits as a result of the separation procedure. Reassociation of isolated subunits at high Mg2+ concentration results in shielding of proteins S3, S5, S7 and S18 and can be explained by reconstitution of the intact 30S subunit structure.  相似文献   

20.
Two monoclonal antibodies raised against intact Escherichia coli ribosomal protein L2 were isolated, affinity-purified, and characterized. One of the antibodies (Ab 5-186) recognizes an epitope within residues 5-186, and the other (Ab 187-272) recognizes an epitope within residues 182-272. Both antibodies strongly inhibit in vitro polyphenylalanine synthesis when they are first allowed to bind to 50 S subunits prior addition of 30 S subunits. However, only Ab 187-272 is inhibitory when added to preformed 70 S ribosomes. Ab 5-186 binds to 50 S subunits but not to 70 S ribosomes. Ab 187-272 does not cause dissociation of 70 S ribosomes under the ionic conditions of the assay for polyphenylalanine synthesis (15 mM magnesium), although at 10 mM magnesium it does cause dissociation. Both antibodies inhibit the reassociation of 50 S with 30 S subunits. Both antibodies strongly inhibit peptidyltransferase activity. The two antibodies differ in their effects on interactions with elongation factors Tu (EF-Tu) and G (EF-G). Neither antibody significantly inhibits EF-G-dependent GTPase activity, nor the binding of EF-G when the antibodies are incubated with 50 S subunits; however, Ab 187-272 causes a decrease in the binding of EF-Tu X aminoacyl-tRNA X GTP ternary complex and of EF-Tu-dependent GTPase when it is incubated with 70 S ribosomes. The Fab fragments of both antibodies had effects similar to the intact antibodies. The results show that monoclonal antibodies can be used to discriminate different regions of L2 and that EF-Tu and EF-G do not have identical ribosomal binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号