首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A single-stranded circular DNA molecule of 6690 ± 450 nucleotides accounts for 5.5 ± 0.3% of the mass of Pf1 virus. The remaining mass is contributed almost entirely by subunits of the major coat protein. A non-integral nucleotide to subunit ratio of 0.87 ± 0.05 is calculated from the DNA content, the average nucleotide mass (309), and the known mass of one protein subunit (4609). There are therefore 7690 ± 680 major coat protein subunits in the virus. The virus length determined by electron microscopy is 1960 ± 70 nm. The data give an average axial distance of 2.55 ± 0.24 Å between protein subunits in dry virus. Since there is an up strand and a down strand of the circular DNA within the virus filament, an axial distance between bases in a given strand of 5.9 ± 0.5 Å is calculated. Available X-ray data show that an axial repeat of 72 Å, or slightly less, would be expected for dry Pf1 virus (0% relative humidity). A structural model in which 27 protein subunits and 24 nucleotides are contained in this repeat would be consistent with our data. The DNA conformation and the subunit packing in Pf1 differ considerably from those in fd, even though both are filamentous viruses containing single-stranded circular DNA. The uncertainties cited are 95% confidence limits.  相似文献   

3.
Specific chemical reactions have been used to prepare and characterize two different heavy-atom derivatives of Pfl filamentous bacterial virus. Two atoms of iodine were bound to Tyr25 of the coat protein using immobilized lactoperoxidase. One atom of mercury was introduced by first attaching a thiol group to the amino terminus of the protein. High quality X-ray fibre diffraction patterns of the virus were obtained using a strong magnetic field to orient the virions during preparation of fibres. Bessel functions were resolved by preparing native fibres at 4 °C, which induces layer-line “splitting” and thereby gives three-dimensional data to 4 Å resolution. Analysis of the intensity changes caused by the heavy atoms on the diffraction patterns at 10 Å resolution showed that the virus has 5.4 protein subunits per 15 Å pitch. The iodine atoms were found at a mean radius of 26 to 28 Å and the mercury at a radius of 31 to 33 Å.  相似文献   

4.
A Casadevall  L A Day 《Biochemistry》1988,27(10):3599-3602
The circular dichroism (CD) of Pfl filamentous virus has been examined over the temperature range 0-40 degrees C, in the absence and presence of Hg(II), Ag(I), and Cu(II). Thermal difference CD spectra were obtained by subtraction of spectra recorded above and below a thermally induced structure transition near 12 degrees C. The thermal difference spectra look like they arise from shifts in two exciton bands, one centered at 230 nm and the other at 290 nm. The amplitudes on either side of a crossover at 230 nm are 10 times those of a crossover at 290 nm. It is proposed that the difference spectra result from thermally induced shifts in coupled oscillator interactions between Tyr40 residues of the coat protein and the guanine and cytosine bases of the DNA. Metal ions can reduce or block these shifts. The changes in ellipticities at 220, 237, and 270 nm induced by changing the temperature have inflections near 12 degrees C. Ag(I) and Hg(II), which are known to bind to the DNA bases in Pfl, reduce or eliminate the inflections in the thermal profiles, depending on the metal ion type and concentration. Cu(II) ions do not affect the profiles. The spectral changes and the effects of the metal ions indicate intimate contact between the DNA bases and the protein subunits in the virion.  相似文献   

5.
DNA packing in the filamentous viruses fd, Xf, Pf1 and Pf3.   总被引:2,自引:0,他引:2       下载免费PDF全文
Spectral data for filamentous viruses in the presence and absence of Ag+, together with other parameters, indicate that the DNA structures in two of the viruses, fd and Xf, are similar to each other but that these differ from two quite unusual and different DNA structures in Pf1 and Pf3.  相似文献   

6.
L Wang  T A Keiderling 《Biochemistry》1992,31(42):10265-10271
The vibrational circular dichroism (VCD) spectra of several natural DNAs as well as tRNA, poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) are reported for the base deformation modes in the IR region from 1700 to 1550 cm-1 for the polymers in D2O as well as in high alcohol dehydrating conditions. Spectra of both the B- and A-forms were identified. The A-form DNA VCD, not previously reported, has characteristics that can be found in the VCD spectra of RNAs as would be expected from the similarity of their structures. The VCD is sequence-dependent. Under the dehydrating conditions studied, poly(dA-dT)poly(dA-dT),poly(dA).poly(dT), and a high-A-T fraction natural DNA had a different bandshape from the other DNAs, which was similar to that of poly(rA).poly(rU). Poly(dG-dC).poly-(dG-dC) did not form an A-form in high-alcohol conditions but instead had a VCD spectrum much like that of its high-salt-induced Z-form. Qualitative differences seen experimentally between A- and B-form DNA VCD were suggested by the differences in the coupled oscillator VCD calculated for the two forms.  相似文献   

7.
DNA sequence of the filamentous bacteriophage Pf1   总被引:9,自引:0,他引:9  
  相似文献   

8.
When excised goldfish spinal cord is kept in physiological saline at room temperature, the myelin multilayers swell. As studied by X-ray diffraction, the original repeating distance of 150 Å (AS myelin) swells to 177 Å (AL myelin); no intermediate distances are seen. At least 70% of the myelin can undergo this gradual conversion. Omitting glucose from the saline, or substituting 2-deoxy-d-glucose for the glucose, or adding NaCN to the saline all promote conversion. Cooling retards the rate but does not prevent conversion. Omitting Ca does prevent conversion, however, and substituting Mg, Sr, or Ba for Ca also does so. Moreover, agents that increase the rate of conversion in Ca-containing saline by up to 5 fold (NaCN, colchicine, A23187) fail to convert myelin in Ca-free saline. We then converted AL myelin back to AS by withdrawing Ca. After converting in NaCN-containing saline, up to 3/4 of the AL myelin recompacts in Ca-free saline; however, none of the myelin recompacts if NaCN is present in the Ca-free saline. Little or no recompaction occurs after conversion in saline without NaCN. Based on our results, we suggest that the oligodendrocytes may maintain AS myelin in vivo by pumping Ca out of the myelin sheath. The myelin in a human PNS nerve has been induced to undergo a similar cycle of swelling and recompaction.  相似文献   

9.
The thermal unfolding of cytochrome P-450 LIN and P-450 CAM measured in presence and absence of their specific substrates was analyzed by circular dichroism (CD) and the alpha-helix content was estimated. Both proteins show, independent of the presence or absence of the substrates, nearly the same amount of loss of the CD in the peptide region. The comparison of the half transition temperatures determined from different chromophores and different methods indicates a non-two-state transition of the thermal unfolding. For such analysis we developed a new spectrometer, which is capable of measuring the CD simultaneously at all wavelengths in a limited wavelength region.  相似文献   

10.
Previously we have shown that human red blood cells (RBCs) undergo a sudden change from blocking to passing through a 1.3±0.2-µm micropipette when applying an aspiration pressure of 2.3 kPa at a critical transition temperature (Tc=36.4±0.3 °C). Low-shear viscosity measurements suggested that changes in the molecular properties of hemoglobin might be responsible for this effect. To evaluate structural changes in hemoglobin at the critical temperature, we have used circular dichroism (CD) spectroscopy. The thermal denaturation curves of human hemoglobin A (HbA) and hemoglobin S (HbS) upon heating between 25 and 60 °C were non-linear and showed accelerated denaturation between 35 and 39 °C with a midpoint at 37.2±0.6 °C. The transition was reversible below 39 °C and independent of solution pH (pH 6.8–7.8). It was also independent of the oxygenation state of hemoglobin, since a sample that was extensively deoxygenated with N2 showed a similar transition by CD. These findings suggest that a structural change in hemoglobin may enable the cellular passage phenomenon as well as the temperature-dependent decrease in viscosity of RBC solutions.  相似文献   

11.
A Casadevall  L A Day 《Biochemistry》1983,22(20):4831-4842
Ag+ binding and Hg2+ binding to both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) have been examined in some detail, and the results have been applied to study the structures of circular ssDNA in several filamentous viruses. It has been known for some time that Ag+ and Hg2+ bind to the bases of DNA producing characteristic large changes in absorbance and circular dichroism (CD) spectra, as well as changes in sedimentation rates. In the case of Ag+, it is known that there are three modes of binding to isolated dsDNA, referred to as types I, II, and III. Type III binding, by definition, occurs when Ag+ binds to Ag-dsDNA complexes having sites for binding types I and II extensively occupied, if not saturated. It produces CD spectra, assigned in this study, and absorbance spectra that are isosbestic with those of the Ag-dsDNA complexes present prior to its onset. In phosphate buffers binding is restricted to types I and II, whereas in borate buffers weaker type III binding can occur. Characteristics of types I, II, and III were observed for the DNAs in fd, If1, IKe, and Xf, but not for those in Pf1 and Pf3. Similarly, many of the spectral changes seen when Hg2+ binds to isolated double-stranded DNA are mimicked by Hg2+ binding to the DNAs within fd, IKe, If1, and Xf, but not for those in Pf1 and Pf3. The Ag+ and Hg2+ results indicate the presence of right-handed DNA helices in fd, If1, IKe, and Xf, with the two antiparallel strands of the covalently closed single-stranded DNAs having the bases directed toward the virion axes. For Pf1 and Pf3, Ag+ and Hg2+ binding cause large absorbance changes but only small CD changes. The very different results for Pf1 and Pf3 are consistent with the presence of inverted DNA structures (I-DNA) with the bases directed away from the structure axes, but the two structures differ from one another. Sedimentation velocity changes with Ag+ and Hg2+ binding strongly suggest structural linkages between the DNA and the surrounding protein sheath in each of the viruses.  相似文献   

12.
Different packaging of DNA in the filamentous viruses Pf1 and Xf   总被引:3,自引:0,他引:3  
Xf Virus DNA, like Pf1 DNA, is a single-stranded circular molecule and contains, within experimental error, the same number of nucleotides, 7400. This was unexpected since Pf1 virus is 2 μm long while Xf virus is only 1 μm long. The ratio of nucleotides to major coat protein subunits has been found to be nearly unity in Pf1 and nearly two in Xf, but it is not certain that the ratios have exactly integer values. Calculations give the average axial internucleotide separation in Pf1virus as 5.3 Å whereas in Xf virus, the calculated separation is only 2.6 Å. The protein subunits in both Pf1 and Xf have calculated axial separations close to 2.6 Å. The results provide a solution to a problem encountered in the interpretation of X-ray diffraction patterns of these viruses concerning the number of protein subunits per helical turn.  相似文献   

13.
We have studied the interaction of the aminoglycoside drug, paromomycin, with a 171-mer from the packaging region of HIV-1 (psi-RNA), using quantitative footprinting and circular dichroism spectroscopy. The footprinting autoradiographic data were obtained by cutting end-labeled RNA with RNase I or RNase T1 in the presence of varying paromomycin concentrations. Scanning the autoradiograms produced footprinting plots showing cleavage intensities for specific sites on the psi-RNA as functions of drug concentration. Footprinting plots showing binding were analyzed using a two-state model to give apparent binding constants for specific sites of the psi-RNA. These plots show that the highest-affinity paromomycin binding site involves nucleotides near bulges in the main stem and SL-1, and other nucleotides in SL-4 of the psi-RNA. RNase I gives an apparent value of K for this drug site of approximately 1.7 x 10(5) M(-1) while RNase T1 reports a value of K of approximately 8 x 10(4) M(-1) (10 mM Tris HCl, pH 7). Footprinting shows that loading the highest affinity site with paromomycin causes structural changes in the single-stranded linker regions, between the stem-loops and main stem and the loops of SL-1 and SL-3. Drug-induced structural changes also affect the intensity of the 208 nm band in the circular dichroism spectrum of the psi-RNA. Fitting the changes in CD band intensity to a two-state model yielded a binding constant for the highest-affinity drug site of 6 x 10(6) M(-1). Thus, the binding constants from footprinting are lower than those obtained for the highest-affinity site from the circular dichroism spectrum, and lower than those earlier obtained using absorption spectroscopy (Sullivan, J. M.; Goodisman, J.; Dabrowiak, J. C., Bioorg. Med. Chem. Lett. 2002, 12, 615). The discrepancy may be due to competitive binding between drug and cleavage agent in the footprinting experiments, but other explanations are discussed. In addition to revealing sites of binding and regions of drug-induced structural change, footprinting showed that the loop regions of SL-1, SL-3 and SL-4 are exposed in the RNA, whereas the linker region between SL-1 and SL-2 is 'buried' and not accessible to cutting by RNase I or RNase T1.  相似文献   

14.
The laser Raman spectra of filamentous viruses contain discrete bands which are assignable to molecular vibrations of the encapsidated, single-stranded DNA genomes and which are informative of their molecular conformations. Discrimination between Raman bands of the DNA and those of the coat proteins is facilitated by analysis of viruses containing deuterium-labeled amino acids. Specific DNA vibrational assignments are based upon previous studies of A-, B-, and Z-DNA oligonucleotide crystals of known structure [Thomas, G.J., Jr., & Wang, A.H.-J. (1988) in Nucleic Acids and Molecular Biology (Eckstein, F., & Lilley, D.M.J., Eds.) Vol. 2, Springer-Verlag, Berlin]. The present results show that canonical DNA structures are absent from six filamentous viruses: fd, If1, IKe, Pfl, Xf, and Pf3. The DNAs in three viruses of symmetry class I (fd, If1, IKe) contain very similar nucleoside sugar puckers and glycosyl torsions, deduced to be C3'-endo/anti. However, nucleoside conformations are not the same among the three class II viruses examined: Pf1 and Xf DNAs contain similar conformers, deduced to be C2'-endo/anti, whereas Pf3 DNA exhibits bands usually associated with C3'-endo/anti conformers. Conformation-sensitive Raman bands of the DNA 3'-C-O-P-O-C-5' groups show that in all class I viruses and in Pf1 the ssDNA backbones do not contain regularly ordered phosphodiester group geometries, like those found in ordered single- and double-stranded nucleic acids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The major coat protein of filamentous bacteriophage adopts its membrane-bound conformation in detergent micelles. High-resolution 1H and 15N NMR experiments are used to characterize the structure and dynamics of residues 30-40 in the hydrophobic midsection of Pf1 coat protein in sodium dodecyl sulfate micelles. Uniform and specific-site 15N labels enable the immobile backbone sites to be identified by their 1H/15N heteronuclear nuclear Overhauser effect and allow the assignment of 1H and 15N resonances. About one-third of the amide N-H protons in the protein undergo very slow exchange with solvent deuterons, which is indicative of sites in highly structured environments. The combination of results from 1H/15N heteronuclear correlation, 1H homonuclear correlation, and 1H homonuclear Overhauser effect experiments assigns the resonances to specific residues and demonstrates that residues 30-40 of the coat protein have a helical secondary structure.  相似文献   

16.
Filamentous phages consist of a single-stranded DNA genome encapsidated by several thousand copies of a small alpha-helical coat protein subunit plus several copies of four minor proteins at the filament ends. The filamentous phages are important as cloning vectors, vehicles for peptide display, and substrates for macromolecular alignment. Effective use of a filamentous phage in such applications requires an understanding of experimental factors that may influence the propensity of viral filaments to laterally aggregate in solution. Because the Raman spectrum of a filamentous phage is strongly dependent on the relative orientation of the virion with respect to the polarization direction of the electromagnetic radiation employed to excite the spectrum, we have applied Raman spectroscopy to investigate lateral aggregation of phages fd, Pf1, Pf3, and PH75 in solution. The results show that lateral aggregation of the virions and anisotropic orientation of the aggregates are both disfavored by high concentrations of salt (>200 mM NaCl) in solutions containing a relatively low virion concentration (<10 mg/mL). Conversely, the formation of lateral aggregates and their anisotropic orientation are strongly favored by a low salt concentration (<0.1 mM NaCl), irrespective of the virion concentration over a wide range. The use of Raman polarization effects to distinguish isotropic and anisotropic solutions of filamentous phages is consistent with previously reported Raman analyses of virion structures in both solutions and fibers. The Raman data are supported by electron micrographs of negatively stained specimens of phage fd, which permit an independent assessment of salt effects on lateral aggregation. The present results also identify new Raman bands that serve as potential markers of subunit side-chain orientations in filamentous virus assemblies.  相似文献   

17.
The Pseudomonas bacteriophage Pf1 is a long ( approximately 2000 nm) and thin ( approximately 6.5 nm) filament consisting of a covalently closed, single-stranded DNA genome of 7349 nucleotides coated by 7350 copies of a 46-residue alpha-helical subunit. The coat subunits are arranged as a superhelix of C(1)()S(5.4)() symmetry (class II). Polarized Raman and polarized FTIR spectroscopy of oriented Pf1 fibers show that the packaged single-stranded DNA genome is ordered specifically with respect to the capsid superhelix. Bases are nonrandomly arranged along the capsid interior, deoxynucleosides are uniformly in the C2'-endo/anti conformation, and the average DNA phosphodioxy group (PO(2)(-)) is oriented so that the line connecting the oxygen atoms (O.O) forms an angle of 71 degrees +/- 5 degrees with the virion axis. Raman and infrared amide band polarizations show that the subunit alpha-helix axis is inclined at an average angle of 16 degrees +/- 4 degrees with respect to the virion axis. The alpha-helical symmetry of the capsid subunit is remarkably rigorous, resulting in splitting of Raman-active helix vibrational modes at 351, 445 and 1026 cm(-)(1) into apparent A-type and E(2)()-type symmetry pairs. The subunit tyrosines (Tyr 25 and Tyr 40) are oriented with phenoxyl rings packed relatively close to parallel to the virion axis. The Tyr 25 and Tyr 40 orientations of Pf1 are surprisingly close to those observed for Tyr 21 and Tyr 24 of the Ff virion (C(5)()S(2)() symmetry, class I), suggesting a preferred tyrosyl side chain conformation in packed alpha-helical subunits, irrespective of capsid symmetry. The polarized Raman spectra also provide information on the orientations of subunit alanine, valine, leucine and isoleucine side chains of the Pf1 virion.  相似文献   

18.
Low-temperature absorption and circular dichroism studies of phytochrome   总被引:1,自引:0,他引:1  
M J Burke  D C Pratt  A Moscowitz 《Biochemistry》1972,11(22):4025-4031
  相似文献   

19.
The low density liporpotein from human serum, and derivitives prepared free of neutral lipids and total lipids, have been studied by fluorescence and circular dichorism methods. Removal of the neutral lipids had little effect on the tryptophan fluorescence at neutral pH. However, by the criteria of circular dichroism, over the range of 200 nm to 250 nm, there was a reduction in secondary structure of over 75%. Removal of the remaining phospholipids resulted in a qualitatively different structure by both fluorescence and circular dichroism criteria. Neutral lipids were removed from LDL in a step-wise fashion in order to determine the exact amount of neutral lipid required for the native circular dichroism spectrum. The circular dichroism band intensity was constant until approximately 10% of the total cholesterol (as cholesterol ester) remained. The intensity then abruptly dropped as more cholesterol was removed. We concluded that the two spectroscopic methods report on two distinct aspects of LDL structure. The tryptophan fluorescence appears to be sensitive to the presence of phospholipids. The circular dichroism, however, appears to be sensitive to the binding of a small amount of neutral lipid. These findings suggest that a functional and geometric separation of binding sites may exist for these two classes of lipids. Such a distinction is predicted by the icosohedral model of the quaternary structure of LDL. In this model, the phospholipids are located on the surface of the particle, in the holes of an icosohedrally symmetric surface network of protein subunits; the neutral lipids are located in the particle core. Finally, we suggest that functional significance may be attached to our finding that relatively few cholesterol ester molecles are needed to maintain the native secondary structure of LDL. This provides a mechanism whereby the amount of bound neutral lipid could be raised or lowered (for transport and transfer to cells) without affecting the protein in any structurally significant manner.  相似文献   

20.
The thermal denaturation of beta-lactoglobulin in aqueous solutions at pH 5.5 and 2.0 was investigated by differential scanning calorimetry (DSC) and circular dichroic (CD) measurements. By calorimetry, the denaturation temperatures (Td), denaturation enthalpies, and specific heat capacity changes for thermal denaturation in the temperature range scanned, i.e., 20-100 degrees C. The unfolding process was found to be only partially reversible. Analysis of the far-ultraviolet CD spectra reveals that with increasing temperature the mean residue ellipticity [( theta]) becomes less negative, which reflects unfolding of the native protein. At the highest temperature of CD measurements, i.e., 80 degrees C, conformational changes are to a large extent reversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号