首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polytonic studies of reconstituted collagen fibers   总被引:1,自引:0,他引:1  
R T Balmer  R J Soto 《Biopolymers》1974,13(3):627-640
The tensile force-contraction characteristics of cross-linked reconstituted collagen fibers have been studied for 30 different water-soluble reagents. The data were obtained via a “polytonic” loading technique, which was neither isometric nor isotonic. Certain data were found to fit a master curve, which did not depend strongly on the denaturant. For many denaturants the contractile force appeared to be a maximum at a denaturant concentration corresponding to all the solvent being consumed in denaturant hydration. Also, the maximum contractile force appeared to vary in the same manner as does the hydration number of the individual cations and anions in the solution (i.e., H > Li > Na > K, and I > Br > Cl > F). Several denaturants were found to be as effective as the well-known LiBr and KSCN in contracting the collagen.  相似文献   

2.
Rat tail tendon collagen fixed with glutaraldehyde and treated with glycerol has been studied by X-ray diffraction technique. The evaluation of the distribution of the areas at higher and less density of molecular packing in the collagen fibrils has been carried out through the analysis of the intensity distribution of the low angle X-ray diffraction maxima. The results show that this treatment usually employed in the freeze-etching technique induces a modification of the degree of order in specific regions inside the axial period D.  相似文献   

3.
4.
5.
N Sasaki  S Shiwa  S Yagihara  K Hikichi 《Biopolymers》1983,22(12):2539-2547
The temperature dependence of the humidity-sensitive spacing, d, related to the lateral packing of collagen molecules was measured for fully hydrated collagen. In the vicinity of 0°C, a sudden change in d was observed, which was reversible with temperature. In the diffraction profile, below 0°C, a set of diffraction peaks identified with the hexagonal crystalline form of ice was observed. With the reduction in water content, the intensity of the set of diffraction peaks decreased and was found to be zero at a water content of 0.38 g/g collagen. These results were considered to be caused by the frozen water in collagen fibril below 0°C. According to the water content dependence of d, it was considered that up to a certain water content water absorbed would be stowed in the intermolecular space of collagen and above that water content water molecules would aggregate to make pools, i. e., extrafibrillar spaces. The unfreezable bound water was considered to be located in the intermolecular space of collagen. Size of the extrafibrillar space, determined from the intensity analysis of a smallangle x-ray scattering pattern, corroborates the speculation that the water showed in the extrafibrillar space is freezable and free. The formation of the hexagonal crystalline form of ice in the extrafibrillar space was considered to cause the sudden change in d at 0°C.  相似文献   

6.
The wide angle X-ray diffraction pattern of air-dried lens capsule collagen under tension is the same as the tendon collagen diffraction pattern with regard to the main reflections, and indicates that lens capsule collagen has the characteristic three-stranded helical structure with an axial repeat of 0.29 nm as tendon collagen. The low angle X-ray diffraction pattern shows several weak diffraction maxima corresponding to the meridional reflections of capsule collagen which show orders of 63.0 nm periodicity. This is an evidence of quarter staggered molecular assembly typical of tendon collagen even if less ordered. The results are consistent with the existence in lens capsule collagen of clearly defined molecular units, which can be oriented by stress and are packed in a poor-ordered fibrillar assembly.  相似文献   

7.
Diffraction patterns of silk from several spider species have been obtained by synchrotron radiation using a beam size > or = 10 microm. Single fiber diffraction patterns were obtained for fiber diameters down to a few microns. Diffraction patterns recorded with a 10 microm wide X-ray beam displayed fiber texture. The presence of two fractions of different crystallinity was confirmed for a single Nephila clavipes fiber. The orientation distribution of the polymer chains of the crystalline fraction along the fiber axis was found to be about 23 degrees full-width at half maximum (fwhm). The azimuthal spread of the short-range order fraction was about 86 degrees fwhm.  相似文献   

8.
Irradiation of native collagen from lathyric rats in solution reduces the depolymerisation speed in the cold of fibres formed by gelification at 37 degrees C, rendering it thus comparable to the speed observed with normal collagen. In our test this normalisation does not appear if the collagen is irradiated in the state of gel. These observations and the absence of specific modifications induced by irradiation in the presence of reagents of the aldehydes speak in favour of the interference, on irradiation, of chemical groups different from the physiological aldehyde groups.  相似文献   

9.
Cytochrome b5 was reconstituted asymmetrically into large unilamellar egg phosphatidylcholine vesicles. Asymmetry was preserved after sedimentation and partial dehydration to form oriented stacks of membranes. The periodicity of the centrosymmetric unit cell ranged between 145 and 175 A, depending upon the water content of the oriented multilayer. X-ray diffraction data were collected to a resolution of 12 A and phase factors were unambiguously assigned by a swelling analysis to a resolution of 15 A. The lower-resolution profile structures clearly showed a highly asymmetric single membrane containing the heme peptide segment of the cytochrome on one side of the membrane bilayer. The higher-resolution data were also analyzed and profile structures were compared with various models for the distribution of cytochrome b5 nonpolar peptide within the membrane bilayer region. The data favor an asymmetric distribution of protein mass within the membrane bilayer.  相似文献   

10.
11.
In order to understand the molecular mechanism of relaxation phenomena in collagenous tissue, time-resolved, small-angle X-ray diffraction measurements were performed on bovine Achilles tendon collagen under creep. A tension-induced increase in the 67 nm period (D-period) was observed, and the strain in the D-period, epsilon D, was found to be almost proportional to the external force per unit cross-sectional area (average stress) of the specimen. With an increase in epsilon D, a change in the ratio of intensities of the third-order reflection peak of the D-period to that of the second-order peak was also observed. The increase in epsilon D was decomposed into three elementary processes of D-period deformation, which are presented on the basis of the Hodge-Petruska model: (1) molecular elongation, (2) increase in gap region, and (3) relative slippage of lateral adjoining molecules. Up to 8 MPa of average stress, the contribution to epsilon D originated mostly from only mode (1). At more than 10 MPa of average stress, modes (2) and (3) also contributed to fibril elongation. For epsilon D by molecular elongation (mode (1)), the time dependence of the D-period change in the immediate response region is a sharply shaped step function, while the contribution to epsilon D by molecular rearranging modes gives a slight creep nature at the immediate response region in the time dependence of epsilon D. Because this creep nature is observed at the immediate response, it is related qualitatively to the KWW function in a stress-relaxation modulus of collagenous tissue observed in an immediate response region (Sasaki et al. (1993). Journal of Biomechanics 26, 1369-1376). The elementary process of KWW-type relaxation is concluded to be related to the tension-induced molecular rearrangement within a D-period.  相似文献   

12.
New insights are presented into the collagenous structure of the primate cornea. Wide-angle X-ray diffraction was used to map the fibrillar arrangement and distribution of collagen over three common marmoset corneas. The maps provide a point of reference to help interpret data from pathological corneas or primate models of refractive surgery. The results herein disclose a circum-corneal annulus of highly aligned collagen, 0.5-1.5 mm wide, where the cornea and sclera fuse at the limbus; a feature similar to that observed in human tissue. As in humans, the annulus is not uniform, varying in width, fibril angular spread, and collagen density around its circumference. However, more centrally the marmoset cornea exhibits a preferred lamella orientation in which proportionally more fibrils are oriented along the superior-inferior corneal meridian. This observation is in striking contrast with the situation in human cornea, where there is an orthogonal arrangement of preferentially aligned fibrils. Investigation of a further 16 corneas confirmed that approximately 33% (+/-1%) (n = 76) of fibrils in the central marmoset cornea lie within a 45 degrees sector of the superior-inferior meridian. Implications for the mechanical and optical properties of the cornea are discussed.  相似文献   

13.
Differential scanning calorimetry, high and small angle X-ray diffraction analyses have been carried out on air-dried and rehydrated rat tail tendon collagen in order to test the reversibility of collagen thermal denaturation. The mean enthalpy values calculated for the denaturation process of air-dried and rehydrated samples are ΔHD = 9.0 ± 0.8 cal/g and ΔHD = 11.9 ±0.7 cal/g respectively, while the denaturation temperatures are TD = 112 ± 1°C and TD = 51 ± 1°C. Partial reversibility of the coiled coil—random coil process can be obtained by storing the samples in air or more rapidly by equilibration in water. After denaturation air-dried collagen fibres recover not only their molecular structure but also their characteristic fibrillar structure. The latter does not greatly influence the mean experimental enthalpy values.  相似文献   

14.
X-ray diffraction data from self-assembled histone fibers are presented for three systems: H4, H3-H4, and the four core histones H2A, H2B, H3 and H4. These data have been obtained under conditions of high ionic strength and high protein concentration which are thought to promote histone conformation similar to that found in intact chromatin. The low angle equatorial scattering (R less than .05 A-1) is analysed, and, with additional constraints imposed by electron microscopy data, four low resolution fibrillar models are derived. Two features common to all the possible models are a maximum outer diameter of approximately 60 A and a subfibril diameter of approximately 25 A. It is the interference of the protein subfibrils across a central region of low electron density - a 10 A "hole" - which gives rise to the characteristic diffraction peak at 36 A. Possible relationships of the models of the histone fibers to the structure of the histone component of chromatin are suggested.  相似文献   

15.
Force, sarcomere length, and equatorial x-ray reflections (using synchrotron radiation) were studied in chemically skinned bundles of fibers from Rana temporaria sartorius muscle, activated by UV flash photolysis of a new photolabile calcium chelator, NP-EGTA. Experiments were performed with or without compression by 3% dextran at 4 degrees C. Isometric tension developed at a similar rate (t(1/2) = 40 +/- 5 ms) to the development of tetanic tension measured in other studies (Cecchi et al., 1991). Changes in intensity of equatorial reflections (I(11) t(1/2), 15-19 ms; I(10) t(1/2), 24-26 ms) led isometric tension development and were faster than for tetanus. During shortening at 0.14P(o), I(10) and I(11) changes were partially reversed (18% and 30%, respectively, compressed lattice), in agreement with intact cell data. In zero dextran, activation caused a compression of A-band lattice spacing by 0.7 nm. In 3% dextran, activation caused an expansion of 1.4 nm, consistent with an equilibrium spacing of 45 nm. But, in both cases, discharge of isometric tension by shortening caused a rapid lattice expansion of 1.0-1.1 nm, suggesting discharge of a compressive cross-bridge force, with or without compression by dextran, and the development of an additional expansive force during activation. In contrast to I(10) and I(11) data, these findings for lattice spacing did not resemble intact fiber data.  相似文献   

16.
The manufacture of parchment from animal skin involves processes that remove hair, fats, and other macromolecules. Although it is well understood that the collagen fibers "open up" during processing, this study uses small and wide-angle X-ray diffraction to measure quantitatively the changes induced at the nanoscopic and microscopic levels. The axial rise per residue distance within the collagen molecules is unaffected by salt and lime treatments. Salting of the hides appears to remove noncollagenous materials. The intermolecular lateral packing distance between the hydrated collagen molecules (1.4 nm) increases after salting ( approximately 1.5 nm) and liming ( approximately 1.55 nm); drying is responsible for a reduction to approximately 1.2 nm in all samples. The axial staggered array (d spacing) is reduced by 1 nm after liming and is unaffected by drying. The average fibril diameter increases from 103.2 to 114.5 nm following liming, and the fibril-to-fibril distance increases from 122.6 to 136.1 nm.  相似文献   

17.
The ion-binding capacity of highly purified reconstituted calf-skin collagen, and the effects of these ions on the precipitation and solubility of the collagen, were studied with a variety of salt solutions at ionic strength 0·16 and pH7·4. Only a small percentage of the total theoretically available anionic and cationic groups was available for ion-binding. In view of this, it appears that most of the ionizable groups of collagen are involved in intramolecular or intermolecular linkages, or both. Nevertheless, marked differences in the binding of the various ions by collagen were observed. Bivalent cations were bound in extremely small but remarkably similar quantities. In contrast, sodium was bound both in much higher and more variable quantities. Of the anions, pyrophosphate and sulphate were bound in the largest quantities, followed by phosphate, fluoride and chloride, in that order. Despite the minimal uptake by collagen of bivalent cations, they prevented the aggregation of tropocollagen into fibrils, and disaggregated fibrillar collagen. In the presence of multivalent anions, tropocollagen aggregated readily and its fibrillar stability was maintained. On the basis of the imbalance in the binding of ion pairs by the sodium pyrophosphate- and sodium phosphate-treated collagens, it was apparent that a reduced number of side-chain carboxyl groups were dissociated in the presence of these salts.  相似文献   

18.
The low angle X-ray diffraction pattern from corneal stroma can be interpreted as arising from the equivalent of sharp meridional reflections due to the packing of molecules along the collagen fibrils and an equatorial pattern due to the packing of these fibrils within lamellae.Axial electron density profiles for corneal collagen fibrils have been produced by combining intensity data from the meridional pattern with two independent sets of phases. The first set was obtained using an electron microscopical technique, whereas the second set consisted of calculated tendon collagen phases given in the literature. Substantial agreement between the two electron density profiles was found.A quantitative analysis of the difference between the electron density profiles of rat tail tendon and corneal collagen showed that the step between the gap and overlap regions is smaller in cornea than in tendon. This is probably due to the binding of non-collagenous material in the gap region as occurs in bone and other tissue. Two peaks corresponding to regions where electron density is greater in the cornea are situated at the gap/overlap junctions. A third region where the corneal collagen is more electron dense is located near the centre of the gap region. The proximity of these peaks to the positions of hydroxylysine residues along the fibril axis suggests that they may be the major sites at which sugars are bound to corneal collagen.  相似文献   

19.
High-resolution electron diffraction of reconstituted PhoE porin   总被引:3,自引:0,他引:3  
PhoE porin has been reconstituted with phospholipid, forming large membrane patches. Electron diffraction shows that the reconstituted PhoE porin forms highly coherent crystalline arrays, giving structural information to a resolution of 3.4 A. The crystal form is of the orthorhombic space group P2(1)2(1)2, with unit cell dimensions a = 150 A and b = 129 A. Images of negatively stained PhoE crystalline patches show that there are four PhoE porin trimers in a unit cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号