首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Azure (or reverse amber) mutants grow normally on wild-type Escherichia coli but not on host strains harbouring a strong UAG suppressor mutation. Three different bacteriophage MS2 azure mutants obtained by treatment with nitrous acid have been characterized at the nucleotide sequence level. The 3′-end fragment of the 32P-labelled mutant genomes was isolated by DNA:RNA hybridization and treatment with nuclease S1, and was analyzed by mini-fingerprinting of the RNA. It is known that the wild-type MS2 polymerase gene ends with a UAG codon, followed seven triplets further by an in-phase UAA triplet. All three azure mutants contained an A → G transition in this UAA second stop codon of the polymerase gene, resulting in a second suppressible UAG (amber) codon. Analysis of revertants demonstrated that the azure mutation can be counteracted either by a true site reversion at the second stop or by the creation of a new stop signal for the polymerase gene, either UAA (ochre) or UGA (opal), before or at the first stop, or beyond the second stop. On the basis of these results, a mechanism for the azure mutation is proposed. Silent mutations (one in the coding region, three in the untranslated 3′-terminal sequence) have also been observed in these phage stocks.  相似文献   

3.
The base-pair changes induced by the highly carcinogenic agent, 4-nitroquinoline-1-oxide, have been determined from the reversion rates of defined tester strains and from the amino acid replacements of revertant iso-1-cytochromes c. The mutant codons and the base-pair changes of reverse mutations of 14 cyc1 mutants were previously determined from alterations of iso-1-cytochromes c in intragenic revertants. These 14 cyc1 mutants, which were used as tester strains, included nine mutants with altered AUG initiation codons, an ochre (UAA) mutant, an amber (UAG) mutant and three frameshift mutants (Stewart et al., 1971,1972; Stewart &; Sherman, 1972,1974; Sherman &; Stewart, 1973). NQO2 induced a high rate of reversion in the initiation mutant cyc1-131, the only mutant in the group which reverts to normal iso-1-cytochrome c by a G · C → A · T transition. In addition, NQO produces a significant rate of reversion of all cyc1 mutants which revert by G · C transversions, e.g. the amber (UAG) mutant and the initiation mutants containing AGG, and probably CUG mutant codons. It did not revert the ochre mutant which contains no G · C base pairs. Ten NQO-induced revertants of the amber mutant cyc1-179 contained the expected replacements of residues of tyrosine, and ten NQO-induced revertants of each of the cyc1-131 and cyc1-133 initiation mutants all contained the expected normal iso-1-cytochrome c. The structures of these iso-1-cytochromes c and the pattern of reversion of the tester strains indicate that base-pair substitutions arise at G · C base pairs which are the site of NQO attack. Thus NQO induces G · C → A · T transitions, G · C → T · A transversions and possibly G · C → C · G transversions. Because of its mode of action, NQO may be useful in less-defined systems for identifying G · C base pairs in mutant codons.  相似文献   

4.
An extensive set of amber and ochre sites in the lacI gene has been characterized with respect to the base change required to generate the nonsense codon (Miller et al., 1977; Coulondre &; Miller, 1977). These mutations have been used to analyze the forward mutational spectrum of a series of mutagens in Escherichia coli. The sites induced by N′-methyl-N′-nitro-N-nitrosoguanidine, ethyl methanesulfonate, 4-nitroquinoline-1-oxide, and ultraviolet light, were examined, as well as those which arose spontaneously. Sites induced by the G · C → A · T transition were compared with those generated by 2-aminopurine mutagenesis. All together, more than 4000 independent occurrences of amber and ochre mutations were tabulated in order to define the respective mutagenic specificities. With the exception of the A · T → G · C change, all base substitutions lead to the generation of nonsense codons from wild-type. The A · T → G · C transition was monitored in a reversion system, in which the ochre to amber conversion (UAA → UAG) was scored, as well as the UAA → CAA reversion.Both NG3 and EMS were found to be highly specific for the G · C → A · T transition, less than 1% transversions appearing in either case. At between 1% and 5% the level of the G · C → A · T change, NG can stimulate the A · T → G · C transition. EMS stimulates the A · T → G · C transition at a significantly lower rate. NQO is also highly specific for G · C base-pairs, but approximately 10% of the changes found at these sites are transversions. Mutations found spontaneously or after irradiation with ultraviolet light showed none of the specificities found for EMS, NG or NQO. All transversions were detected in both cases. Moreover, a significant number of tandem double base changes were found to be induced by u.v. irradiation. Some of these have been verified directly by protein sequencing. The frequencies of occurrence of amber and ochre mutations arising from the G · C → A · T transition have been compared for different mutagens, revealing several striking hotspots. The implications of these findings with respect to the mechanism of mutagenesis and the application of different mutagens are discussed.  相似文献   

5.
The molecular basis of beta(0)-thalassemia/HbE disease in 30 Thai patients was investigated using DNA amplification and dot-blot hybridization with a number of allele specific oligonucleotide probes. The mutations identified were 17 cases of 4 base-pair deletion at codons 41-42, 4 cases of amber mutation at codon 17, and one case each of an ochre mutation at codon 35, a single base substitution at position 5 of IVS-1, and a single base substitution at position 654 of IVS-2.  相似文献   

6.
Three ochre and two amber mutants in yeast have been definitively identified by the amino acid replacements in iso-1-cytochromes c from intragenic revertants. Except for rare and sometimes unusual changes, all of the replacements were single amino acids whose codons differed from UAA or UAG by one base. These assignments, which were based on the absence of tryptophan replacements in ochre revertants, could be corroborated from the studies of two groups of suppressors that were shown to act on either the ochre or amber mutants. All five nonsense mutants are located at different sites in the cyc1 gene and all are at sites that can be occupied by amino acids having a wide range of structures. The relative frequencies of the amino acid replacements indicate that identical codons located at different sites may respond differently to a mutagenic agent. Notably glutamine replacements occurred almost exclusively in UV-induced revertants of only one ochre mutant cyc1–9, but not at all or at reduced proportions in the others. Similarly, lysine replacements occurred almost exclusively in the NA-induced revertants of only the ochre mutant cyc1–72, but not at all in the others. These and other results reveal that mutation of A·T base pairs by UV and nitrous acid are dependent upon the location of the codon within the gene as well as the location of the base pair within the codon. From these findings, it appears as if the type of base-pair changes induced by UV and nitrous acid are strongly influenced by adjacent nucleotide sequences.  相似文献   

7.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

8.
4-nitroquinoline-1-oxide (NQO) induces high frequencies of intragenic revertants of amber (UAG) but not ochre (UAA) mutants of yeast. Distinction of the amber and ochre codons was made with well-characterized nonsense mutants of the iso-1-cytochrome c gene (cyc1 mutants) as well as with nonsense mutants having nutritional requirements. Thus the NQO-induced reversion frequencies corroborated the assignments that were based on the pattern of amino acid replacements in intragenic revertants and on the speficity of suppression. It was concluded from these results and from the results of a previous investigation with other cyc1 mutants (Prakash, Stewart and Sherman 1974) that NQO induces transversions of G:C base pairs at many sites and that the specificity is not strongly influenced by neighboring base pairs in at least the strains examined in these studies. NQO was previously shown to induce G:C → A:T transitions at least at one site and this and the previous study established that it does not significantly mutate A:T base pairs at numerous sites. Thus NQO can be used to selectively mutate G:C base pairs and to determine if the pathways of reverse mutations involve G:C base pairs. Suppressors that act on either amber or ochre mutants were induced with NQO, indicating that they can arise by mutations of G:C base pairs.  相似文献   

9.
Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.Translation termination is mediated by one of the three stop codons (UAA, UAG, or UGA). When such stop codons arise in coding sequences due to mutations, referred to as nonsense mutations, they lead to abrupt arrest of the translation process. However, the termination efficiency of such nonsense codons is not 100%, as certain tRNAs have the ability to read these nonsense codons. Genetic code ambiguity is seen in several organisms. Stop codons have been shown to have alternate roles apart from translation termination. In organisms from all three domains of life, UGA encodes selenocysteine through a specialized mechanism. In Methanosarcinaceae, UAG encodes pyrrolysine (3). UAA and UAG are read as glutamine codons in some green algae and ciliates such as Tetrahymena and Diplomonads (24), and UAG alone encodes glutamine in Moloney murine leukemia virus (32). UGA encodes cysteine in Euplotes; tryptophan in some ciliates, Mycoplasma species, Spiroplasma citri, Bacillus, and tobacco rattle virus; and an unidentified amino acid in Pseudomicrothorax dubius and Nyctotherus ovalis (30). In certain cases the context of the stop codon in translational readthrough has been shown to play a role; for example, it has been reported that in vitro in tobacco mosaic virus, UAG and UAA are misread by tRNATyr in a highly context-dependent manner (34, 9).Termination suppressors are of three types, i.e., amber, ochre, and opal suppressors, which are named based on their ability to suppress the three stop codons. Amber suppressors can suppress only amber codons, whereas ochre suppressors can suppress ochre codons (by normal base pairing) as well as amber codons (by wobbling) and opal suppressors can read opal and UGG tryptophan codon in certain cases. As described by Sambrook et al. (27), a few amber suppressors can also suppress ochre mutations by wobbling. The suppression efficiency varies among these suppressors, with amber suppressors generally showing increased efficiency over ochre and opal suppressors. supE44, an amber suppressor tRNA, is an allele of and is found in many commonly used strains of Escherichia coli K-12. Earlier studies have shown that supE44 is a weak amber suppressor and that its efficiency varies up to 35-fold depending on the reading context of the stop codon (8).Translational accuracy depends on several factors, which include charging of tRNAs with specific amino acids, mRNA decoding, and the presence of antibiotics such as streptomycin and mutations in ribosomal proteins which modulate the fidelity of the translational machinery. Among these, mRNA decoding errors have been reported to occur at a frequency ranging from about 10−3 to 10−4 per codon. Translational misreading errors also largely depend on the competition between cognate and near-cognate tRNA species. Poor availability of cognate tRNAs increases misreading (18).Several studies with E. coli and Saccharomyces cerevisiae have shown the readthrough of nonsense codons in suppressor-free cells. In a suppressor-free E. coli strain, it has been shown in vitro that glutamine is incorporated at the nonsense codons UAG and UAA (26). It has been reported that overexpression of wild-type tRNAGln in yeast suppresses amber as well as ochre mutations (25). In this study, we have confirmed the presence of an amber suppressor mutation in the glnX gene in a supE44 strain by sequence analysis. This was done essentially because we observed that supE44 could also suppress lacZ ochre mutations, albeit inefficiently. On further investigation using an in vivo luciferase reporter assay system for tRNA-mediated nonsense suppression (28), we found that the efficiency of suppression of amber lesion by supE44 is significantly higher than that reported previously in the literature. An increased ability to suppress ochre and opal nonsense mutations was observed in cells bearing supE44 compared to in the wild type. Such an effect was observed only in the stationary phase and was abolished in logarithmic phase.  相似文献   

10.
The basis for the specific pattern of ultraviolet-induced reversion of cyc1-9, an ochre allele of the structural gene for iso-1-cytochrome c, has been examined in radiation-sensitive strains of yeast. Previous analysis, using RAD+ strains, showed that 21 out of 23 cyc1-9 revertants induced by ultraviolet light arose by A · T to G · C transition at the first position in the UAA codon, the remaining two occurring by A · T to T · A transversion at the second position (Stewart et al., 1972; Sherman &; Stewart, 1974). All possible base-pair substitutions could be obtained with the aid of other mutagens.It has now been shown that this specificity depends largely on the action of the RAD6 locus, since ultraviolet-induced revertants of cyc1-9 arose by a variety of base-pair substitutions in a strain carrying the rad6-1 allele. Induced reversion frequencies in strains carrying this allele are much lower than normal, though significantly higher than the spontaneous frequency, and the strains are more sensitive to the lethal effects of both ultraviolet and X-irradiation. The phenotypically similar rad18-2 mutation, which appears to block the same repair pathway as rad6-1, also has some effect on the reversion specificity, but its action depends on the presence of other, unidentified, mutations. Specificity was, however, completely unaltered in an excision-defective strain carrying the rad1-2 allele. Induced reversion frequency of cyc1-9 was much higher than normal in this strain. Photoreactivation studies indicated that pyrimidine dimers were responsible for most of the revertants in RAD+, rad1 and rad6 strains. These experiments show that the RAD6+ locus is intimately concerned with error-prone repair, and suggest that excision repair is substantially error-free.  相似文献   

11.
The cyc1-9 ochre (UAA) mutant and the cyc1-179 amber (UAG) mutant of the yeast Saccharomyces cerevisiae were reverted with X-rays and -particles. The amino acid sequence changes of iso-1-cytochromes c from 36 of the intragenic revertants were determined by amino acid analysis and peptide mapping, aided by partial amino acid sequencing of 4 revertants. In addition, the DNA segments encompassing 3 unusual mutations with complex changes were cloned and sequenced. This study and previous studies of 16 other revertants of cyc1-9 and cyc1-179 revealed that ionizing radiation primarily induces single base-pair substitutions; 47 of the 52 revertants arose by transversions and transitions without any apparent preference. However, the A·T→T·A substitution at the first base pair for the cyc1-179 UAG codon, leading to the normal protein, was not detected, nor was it found previously in 32 revertants of cycl-179 obtained spontaneously or induced with various other mutagens; apparently, there is a prohibition of certain base-pair substitutions at certain sites in DNA. In addition, 5 of the 52 revertants arose by multiple changes within a short region of 11 base pairs. These consisted of the deletion of 6 base pairs, the substitution of 3 base pairs, and 3 different kinds of substitutions of two base pairs. Compared to other mutagens previously tested with the cyc1 system, ionizing radiation produces the most random types of base-pair substitutions.  相似文献   

12.
Spontaneous, 2-aminopurine- and 5-bromouracil-induced mutations at six rII nonsense codons were studied in phage T4 strains possessing wild-type and mutant gene 43 alleles. The mutation pathways studied included interconversions and reversions of nonsense codons. The tsCB87 allele, which specifies an antimutator DNA polymerase, reduced base-analogue-induced mutation frequencies along all pathways. However, GC base pairs were less affected than AT base pairs. The frequency of spontaneous UAA→UAG conversions was also reduced by tsCB87, but that of spontaneous UAA→UGA conversions was often increased. Mutation in the presence of the mutator allele tsL56 was increased along all pathways, with no preference for either AT or GC base pairs. Mutation frequencies in the presence of the two mutant DNA polymerases were highly variable. A strong correlation was found between 2-aminopurine-induced mutation frequencies in ts+ and tsCB87 phage along the reversion and UAA→UAG (but not UAA→UGA) pathways.  相似文献   

13.
Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast   总被引:19,自引:0,他引:19  
In previous studies the nucleotide sequences of numerous mutant codons in the cy1 gene have been identified from altered iso-1-cytochromes c. These studies not only revealed the mutant codons that caused the deficiencies but also experimentally determined which of the base pair changes allowed the formation of functional iso-1-cytochromes c. In this investigation we have quantitatively measured the reversion frequencies of eleven cy1 mutants which were treated with 12 mutagens. The cy1 mutants comprised nine mutants having single-base changes of the AUG initiation codon (Stewart et al., 1971), an ochre mutant cy1–9 (Stewart et al., 1972), and an amber mutant cy1–179 (Stewart &; Sherman, 1972). In some cases the types of induced base changes could be inferred unambiguously from the pattern of reversion. Selective G.C to A.T transitions were induced by ethyl methanesulfonate, diethyl sulfate, N-methyl-N′-nitro-N-nitrosoguanidine, 1-nitrosoimidazolidone-2, nitrous acid, [5-3H]uridine and β-propiolactone. There was no apparent specificity with methyl methanesulfonate, dimethyl sulfate, nitrogen mustard and γ-rays. Ultraviolet light induced high rates of reversion of the ochre and amber mutants, but in these instances it appears as if the selective action is due to particular nucleotide sequences and not due to simple types of base pair changes.  相似文献   

14.
Nonsense suppressors were obtained in a haploid yeast strain containing eight nutritional mutations, that are assumed to be amber or ochre, and the cyc1-179 amber mutation that has a UAG codon corresponding to position 9 in iso-1-cytochrome c. Previous studies established that the biosynthesis and function of iso-1-cytochrome c is compatible with replacements at position 9 of amino acids having widely different structures (Stewart and Sherman 1972). UV-induced revertants, selected on media requiring the reversion of one or two of the amber nutritional markers, were presumed to contain a suppressor if there was the unselected reversion of at least one other marker. The 1088 suppressors that were isolated could be divided into 78 phenotypic classes. Only 43 suppressors of three classes caused the production of more than 50% of the normal amount of iso-1-cytochrome c in the cyc1-179 strain. Genetic analyses indicated that all of these highly efficient amber suppressors are allelic to one or another of the eight suppressors which cause the insertion of tyrosine at ochre (UAA) codons (Gilmore, Stewart and Sherman 1971). Furthermore, only tyrosine has been identified at position 9 in iso-1-cytochrome c in cyc1-179 strains suppressed with these efficient amber suppressors.  相似文献   

15.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

16.
The Neurospora crassa super-suppressor mutation, ssu-1, suppresses the auxotrophic phenotype of the mutant am(17) by inserting tyrosine at residue 313 of NADP-specific glutamate dehydrogenase, a position occupied in the wild type by glutamate. Two classes of am(17) revertants due to further mutation within the am gene have, respectively, tyrosine and leucine at residue 313. These replacements are consistent with a chain-terminating codon in am(17) of either the amber (UAG) or the ochre type (UAA), but are inconsistent with UGA. The Leu313 and Tyr313 variants of the enzyme have effective activity but are grossly different from the wild type in Michaelis constants (especially for ammonium) and heat stabilities at two different pH values. They show smaller but significant differences in these respects from each other.  相似文献   

17.
We present the first direct measurement of a transient mismatched base-pair in a 2-aminopurine-induced mutagenic pathway. We provide a model to calculate misincorporation rates in vivo from measured base-pair populations. The population of 2-aminopurine · hydroxymethylcytosine (AP · C2) base-pairs at a marker locus in T4 bacteriophage is measured as rII-r+ heteroduplex-heterozygotes in a modified single burst experiment after 2-aminopurine mutagenesis. This completes the determination of each of the base-pairs in the 2-aminopurine-induced A · T → G · C transition pathway for the marker rUV199. The observed AP · C population confirms a surprising model prediction that the probability of incorporating HMdCTP opposite a template 2-aminopurine is very large, approximately 2% per round of replication. AP induces A · T → G · C and G · C → A · T transitions at roughly the same rates. A quantitative comparison of 2-aminopurine-induced A · T → G · C and G · C → A · T transition pathways shows a marked asymmetry in the formation of AP · C base-pairs; the probability of forming AP · C base-pair intermediates in the A · T → G · C transition pathway is several orders of magnitude larger than in the G · C → A · T pathway. A set of analytic equations giving the population of each state of an allele undergoing 2-aminopurine mutagenesis (A · T, AP · T, AP · C and G · C) as a function of interstate (e.g. A · T → AP · T) and intrastate (e.g. A · T → A · T) transition rate constants and the number of rounds of replication is derived. The equations also demonstrate that a determination of AP · CG · C base-pair ratios is a direct measure of the number of rounds of replication; thus the value of 0.35 AP · C per G · C base-pair as measured in this experiment reveals that there were eight to nine rounds of DNA replication during the mutagenesis treatment.  相似文献   

18.
The suppressors SUP6-2 and SUP7-2 can cause the production of approxi- mately 25 to 60% of the normal amount of iso-1-cytochrome c when they are coupled to the amber (UAG) mutants cy1–179 and cy1–76. The iso-1-cytochromes c contain residues of tyrosine at the positions which correspond to the sites of the amber codons. SUP6-2 and SUP7-2 do not suppress ochre (UAA) mutants. The SUP6-2 and the SUP7-2 genes are apparently alleles of the SUP6-1 and SUP7-1 genes, respectively, which cause the insertion of tyrosine at ochre (UAA) codons (ochre-specific suppressors). It is suggested that the gene products of the allelic amber suppressors and ochre-specific suppressors (the SUP6-1 and SUP6-2 suppressors and theSUP7-1 andSUP7-2 suppressors) are two differently altered forms of the same tyrosine tRNA.  相似文献   

19.
In Saccharomyces cerevisiae, translation termination is mediated by a complex of two proteins, eRF1 and eRF3, encoded by the SUP45and SUP35 genes, respectively. Mutations in the SUP45 gene were selected which enhanced suppression by the weak ochre (UAA) suppressor tRNASerSUQ5. In each of four such allo-suppressor alleles examined, an in-frame ochre (TAA) mutation was present in the SUP45 coding region; therefore each allele encoded both a truncated eRF1 protein and a full-length eRF1 polypeptide containing a serine missense substitution at the premature UAA codon. The full-length eRF1 generated by UAA read-through was present at sub-wild-type levels. In an suq5+ (i.e. non-suppressor) background none of the truncated eRF1 polypeptides were able to support cell viability, with the loss of only 27 amino acids from the C-terminus being lethal. The reduced eRF1 levels in these sup45 mutants did not lead to a proportional reduction in the levels of ribosome-bound eRF3, indicating that eRF3 can bind the ribosome independently of eRF1. A serine codon inserted in place of the premature stop codon at codon 46 in the sup45–22 allele did not generate an allosuppressor pheno-type, thereby ruling out this‘missense’mutation as the cause of the allosuppressor phenotype. These data indicate that the cellular levels of eRF1 are important for ensuring efficient translation termination in yeast.  相似文献   

20.
The range of specificity of the rev2-1 mutation, an allele that reduces the frequency of ochre revertants induced by UV in Saccharomyces cerevisiae (LEMONTT 1971a), has been investigated by examining its influence on the reversion of eleven well-defined and contrasting cyc1 mutations. We have shown, in support of a suggestion of LEMONTT (1971a), that the REV2 gene product is concerned only with the reversion of ochre alleles; it plays virtually no role in the reversion of amber, missense or frameshift mutations. We have also shown that its effect is specific and confined to only some highly revertible ochre alleles. The REV2 gene product appears to enhance reversion at these sites by facilitating the conversion of two otherwise nonmutagenic photo-products into a single premutational lesion. UV-induced killing of rev2-1 strains was found to be significantly greater on fermentable rather than on nonfermentable media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号