首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The α-lytic protease was isolated from an extracellular filtrate of the soil microorganism Myxobacter 495. Trigonal crystals (space group, P3221) of this serine enzyme were grown from 1·3 m-Li2SO4 at pH 7·2. X-ray reflections from crystals of the native enzyme, comprising the 2·8 Å limiting sphere, were phased by the multiple isomorphous replacement technique. Five heavy-atom derivatives were used and the overall mean figure of merit 〈m?〉 is 0·83. The resulting native electron density map of α-lytic protease has been interpreted in conjunction with the published sequence (Olson et al., 1970) of 198 amino-acid residues.α-Lytic protease has a structural core similar to that of the pancreatic serine proteases (108 α-carbon atom positions are topologically equivalent (within 2·0 Å) to residues of porcine elastase) and its tertiary structure is even more closely related to the two other bacterial serine protease structures previously determined (James et al., 1978; Brayer et al., 1978b; Delbaere et al., 1979a). α-Lytic protease has the following distinctive features in common with the bacterial serine enzymes, Streptomyces griseus proteases A and B: an amino terminus that is exposed to solvent on the enzyme surface, a considerably shortened uranyl loop (residues 65 to 84), a major segment of polypeptide chain from the autolysis loop deleted (residues 144 to 155), a buried guanidinium group of Arg138 in an ion-pair bond with Asp194, and an altered conformation of the methionine loop (residues 168 to 182) relative to the pancreatic enzymes.At the present resolution, the members of the catalytic quartet (Ser214, Asp102, His57 and Ser195) adopt the conformation found in all members of the Gly-Asp-Ser-Gly-Gly serine protease family. The carboxylate of Asp102 is in a highly polar environment, as it is the recipient of four hydrogen bonds. The interaction between the Nε2 atom of the imidazole ring in His57 and Oγ atom of Ser195 is very weak (3·3 Å) and supports the concept that there is little, if any, enhanced nucleophilicity of the side-chain of Ser195 in the native enzyme.The molecular basis for the observed substrate specificity of α-lytic protease is clear from the distribution of amino acid side-chains in the neighborhood of the active site. An insertion of five residues at position 217, and the conformation of the side-chain of Met192 account for the fact that the specificity pocket can bind only small residues, such as Ala, Ser or Val.  相似文献   

2.
High resolution proton nuclear magnetic resonance has been used to observe protons at the active site of chymotrypsin Aδ and at the same region of chymotrypsinogen A. A single resonance with the intensity of one proton is located in the low field region of the nuclear magnetic resonance spectrum. This resonance is observed in H2O solutions but not in 2H2O. On going from low to high pH the resonance titrates upfield 3 parts per million in both proteins and has a pK of 7.5. The titration can be prevented by alkylating His57 with either of two active site directed chloromethyl ketones. Using these data the proton resonance has been assigned to a proton in a hydrogen bond between His57 and Asp102. Further confirmation of this assignment lies in the observation of a similar resonance in this same low field region of the nuclear magnetic resonance spectrum of trypsin, trypsinogen, subtilisin BPN′ and α-lytic protease all of which have the Asp-His-Ser triad at their active sites.This proton resonance in chymotrypsin Aδ was used as a probe to monitor the charge state of the active site upon formation of a stable acyl-enzyme analogue N2(N-acetylalanyl)-N1benzoylcarbazoyl-chymotrypsin Aδ. In this derivative the His-Asp proton resonance titrates from the same low pH end point as in the native enzyme, ?18 parts per million, to a new high pH end point of ?14.4 parts per million (versus ?15.0 parts per million in the native enzyme). The difference of 0.6 parts per million in the high pH end points between the native and acyl enzyme is interpreted as supporting the suggestion that a hydrogen bond exists between Ser195 and His57 in the native enzyme and zymogen.We conclude from these studies that the charge relay system from Asp102 across His57 to Ser195 is intact in chymotrypsin Aδ and chymotrypsinogen A, and that, in the native enzyme, it slightly polarizes Ser195.  相似文献   

3.
We describe here successful designs of strong inhibitors for porcine pancreatic elastase (PPE) and Streptomyces griseus protease B (SGPB). For each enzyme two inhibitor variants were designed. In one, the reactive site residue (position 18) was retained and the best residues were substituted at contact positions 13, 14, and 15. In the other variant the best residues were substituted at all contact positions except the reactive site where a Gly was substituted. The four designed variants were: for PPE, T13E14Y15-OMTKY3 and T13E14Y15G18M21P32V36-OMTKY3, and for SGPB, S13D14Y15-OMTKY3 and S13D14Y15G18I19K21-OMTKY3. The free energies of association (ΔG0) of expressed variants have been measured with the proteases for which they were designed as well as with five other serine proteases and the results are discussed.  相似文献   

4.
In order for intricate biochemical pathways to function properly in the heterogeneous environment of a cell or organism, high specificity of enzymesubstrate reactions is essential. The molecular nature of this specificity is examined for the case of the specific activation of prothrombin by factor Xa of the blood coagulation system using model-building methods.The structure of blood clotting factor Xa was modeled by homology to the known structures of the mammalian serine proteases. The sequence about the cleaved peptide bond in prothrombin was placed into the active site of factor Xa in a conformation similar to that of bovine pancreatic trypsin inhibitor and soybean trypsin inhibitor, when bound to trypsin, and to that of the tripeptide chloromethyl ketones, when bound to γ-chymotrypsin and Streptomyces griseus protease B.The model of the complex between prothrombin and factor Xa shows the expected salt-bridge between the Arg preceding the cleaved peptide bond and the primary specificity residue Asp189 of factor Xa. Two other salt-bridges appear to be formed: between a Glu three residues before the cleaved bond in prothrombin and Arg143 of factor Xa, and between a second Glu three residues after the cleaved bond and Lys62 in factor Xa. Several hydrogen bonds and hydrophobic interactions also occur in the complex. A stereogeometric requirement for a Gly two residues before the cleaved bond is also imposed by the factor Xa structure.Examination of the known serine protease sequences and model building suggest that the two new salt-bridges are unique to the prothrombin-factor Xa complex. Therefore, these charge interactions, and the requirement for a Gly, are likely to be at least partially responsible for the high specificity of the activation of prothrombin by factor Xa.  相似文献   

5.
A low molecular weight protein inhibitor of serine proteinases from Russet Burbank potato tubers, polypeptide chymotrypsin inhibitor-1 (PCI-1), has been crystallized in complex with Streptomyces griseus proteinase B (SGPB). The three-dimensional structure of the complex has been solved at 2.1 A resolution by the molecular replacement method and has been refined to a final R-factor (= sigma[[Fo[-[Fc[[/sigma[Fo[) of 0.142 (8.0 to 2.1 A resolution data). The reactive site bond of PCI-1 (Leu38I to Asn39I) is intact in the complex, and there is no significant distortion of the peptide from planarity. The distance between the active site serine O gamma of SGPB and the carbonyl carbon of the scissile bond of PCI-1 is 2.8 A (1 A = 0.1 nm). The inhibitor has little secondary structure, having a three-stranded antiparallel beta-sheet on the side opposite the reactive site and four beta-turns. PCI-1 has four disulphide bridges; these presumably take the place of extensive secondary structure in keeping the reactive site conformationally constrained. The pairing of the cystine residues, which had not been characterized chemically, is as follows: Cys3I to Cys40I, Cys6I to Cys24I, Cys7I to Cys36I, and Cys13I to Cys49I. The molecular structure of SGPB in the PCI-1 complex agrees closely with the structure of SGPB complexed with the third domain of the turkey ovomucoid inhibitor (OMTKY3). A least-squares overlap of all atoms in SGPB gives a root-mean-square difference of 0.37 A. One of the loops of SGPB (Ser35 to Gly40) differs in conformation in the two complexes by more than 2.0 A root-mean-square for the main-chain atoms. Thr39 displays the largest differences with the carbonyl carbon atom deviating by 3.6 A. This conformational alternative is a result of the differences in the molecular structures of the P'4 residues following the reactive site bonds of the two inhibitors. This displacement avoids a close contact (1.3 A) between the carbonyl oxygen of Ser38 of SGPB and Pro42I C beta of PCI-1. The solvent structure of the PCI-1-SGPB complex includes 179 waters, two sulphate or phosphate ions, and one calcium or potassium ion, which appears to play a role in crystal formation. The molecular structure of PCI-1 determined here has allowed the proposal of a model for the structure of a two-domain inhibitor from potatoes and tomatoes, inhibitor II.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Viral-encoded proteases cleave precursor polyprotein(s) leading to maturation of infectious virions. Strikingly, human rhinovirus 3C protease shows the trypsin(ogen)-like serine protease fold based on two topologically equivalent six-stranded β-barrels, but displays residue Cys147 as the active site nucleophile. By contrast, papain, which is representative of most cysteine proteases, does not display the trypsin(ogen)-like fold. Remarkably, in human rhinovirus 3C cysteine protease, the catalytic residues Cys147, His40 and Glu71 are positioned as Ser195, His57 and Asp102, respectively, building up the catalytic triad of serine proteases in the chymotrypsin–trypsin–elastase family. However, as compared to trypsin-like serine proteases and their zymogens, residue His40 and the oxyanion hole of human rhinovirus 3C cysteine protease, both key structural components of the active site, are located closer to the protein core. Human rhinovirus 3C cysteine protease cleaves preferentially GlnGly peptide bonds or, less commonly, the GlnSer, GlnAla, GluSer or GluGly pairs. Finally, human rhinovirus 3C cysteine protease and the 3CD cysteine protease–polymerase covalent complex bind the 5′ non-coding region of rhinovirus genomic RNA, an essential function for replication of the viral genome.  相似文献   

7.
The naturally occurring serine protease inhibitor, chymostatin, forms a hemiacetal adduct with the catalytic Ser195 residue of Streptomyces griseus protease A. Restrained parameter least-squares refinement of this complex to 1.8 A resolution has produced an R index of 0 X 123 for the 11,755 observed reflections. The refined distance of the carbonyl carbon atom of the aldehyde to O gamma of Ser195 is 1 X 62 A. Both the R and S configurations of the hemiacetal occur in equal populations, with the end result resembling the expected configuration for a covalent tetrahedral product intermediate of a true substrate. This study strengthens the concept that serine proteases stabilize a covalent, tetrahedrally co-ordinated species and elaborates those features of the enzyme responsible for this effect. We propose that a major driving force for the hydrolysis of peptide bonds by serine proteases is the non-planar distortion of the scissile bond by the enzyme, which thereby lowers the activation energy barrier to hydrolysis by eliminating the resonance stabilization energy of the peptide bond.  相似文献   

8.
Chymostatin is a naturally occurring inhibitor of serine proteases that have chymotryptic-like specificity. This tetrapeptide inhibitor is produced by various species of Streptomyces bacteria. Chymostatin reacts with the serine enzyme Streptomyces griseus protease A in the crystalline state to produce an adduct, the structure of which is in agreement with hemiacetal formation between the C-terminal l-phenylalaninal residue of the inhibitor and the Oγ atom of the active Ser195 residue of S. griseus protease A. The 2.8 Å difference electron density map of the complex is also consistent with the novel structural features previously deduced spectroscopically for chymostatin; i.e. an essential (for inhibition) aldehyde function in the C-terminal l-phenylalaninal residue, an unusual arnino acid, 2-(2-iminohexahydro-(4 S)-pyrimidyl)-(S)-glycine as the third residue from the C terminus and an N-terminal amino group blocked by a (1S)-carboxyphenylethyl-carbamoyl group. There is no significant movement of the active site residues of S. griseus protease A upon complexation with chymostatin.  相似文献   

9.
The pH- and time-dependent reactions of the antitumor drug cisplatin, cis-[PtCl2(NH3)2], with the methionine-containing peptides Ac-Met-Gly-OH, Ac-Met-Pro-OH, Ac-Met-Pro-Gly-Gly-OH and Ac-Gly-Met-Pro-Gly-Gly-OH (Gly = glycyl, Met = d-methionyl, Pro = L-prolyl) at 313 K have been investigated by high performance liquid chromatography, mass spectrometry and nuclear magnetic resonance. As a result of the strong trans influence of the methionyl SM atom, initial Pt-SM binding at pH > 5 is followed by a rapid formation of tridentate machrochelates for the N-acetylated peptides. The site trans to SM is occupied by a carboxylate O atom in the case of the κ3SM,NM,OG/P macrochelates of the dipeptides and by the C-terminal glycylamide NG2 atom for the κ3SM,OM,NG2 macrochelate of Ac-Met-Pro-Gly-Gly-OH. Cisplatin simultaneously mediates the rapid hydrolytic cleavage of the Met-X (X = Gly, Pro) amide bond for both dipeptides over the whole range 2.8 ? pH ? 10.0. The released amino acids X react with the resulting κ2SM, NM chelate of N-acetylmethionine to afford mixed κSM:κ2Nx,Ox complexes of the type cis-[Pt(NH3)(Ac-Met-OH-κS)(H-X-O-κ2Nx,Ox)]+ as final products at pH < 5 for X = Gly and pH < 8 for X = Pro. In contrast to the dipeptides, hydrolytic cleavage of the Met-Pro amide bond in Ac-Met-Pro-Gly-Gly-OH at pH > 5 is significantly inhibited by the presence of high concentrations of the macrochelate [Pt(NH3)(Ac-Met-Pro-Gly-Gly)-κ3SM,OM,NG2]+. Downstream hydrolysis of the Met-Gly amide bond is competitive with upstream Ac-Gly cleavage for Ac-Gly-Met-Pro-Gly-Gly-OH at pH < 4.5.  相似文献   

10.
The crystal structure of the bacterial serine protease from Streptomyces griseus (SGPA) has been refined at 1.8 Å resolution by a restrained parameter least-squares procedure (Konnert, 1976) to a conventional R factor of 0.139 for 12662 statistically significant reflections [I > 3σ(I)]. The number of variable parameters in the final model was 5912 which included positional and individual thermal parameters of the enzyme, and positions, B factors and occupancies of 175 solvent molecules. The algorithm used for this refinement allows for the simultaneous restraint on bond distances and distances related to interbond angles, the coplanarity of atoms in planar groups, the conservation of chirality of asymmetric centres, non-bonded contact distances, conformational torsional angles and individual isotropic temperature factors.The refined structure of SGPA differs from ideal bond lengths by an overall root-mean-square deviation of 0.02 Å; the corresponding value for angle distances is 0.038 Å. Comparison of the phase angles for the shell of data, 8.0 to 2.8 Å, between the multiple isomorphous replacement phases (Brayer et al., 1978a) and the refined phases, indicates an overall difference (r.m.s.) of 56.6 °. The average conformational angle of the peptide bond (ω) is 179.7 ° (root-mean-square deviation ± 2.5 °) for the 180 peptide bonds of SGPA. Of the 175 solvent molecules included during the course of the refinement, 22 with occupancies ranging from 1.00 to 0.38 are located in the active site and the substrate binding region. It was not until these water molecules were included in the refinement process that the active Ser195 adopted its final conformation (χ1 = ?77 °). The resulting distance from Oγ of Ser195 to Nε2 of His57 is 3.1 Å, which, when taken with the observed distortion from linearity (50 °), indicates a rather weak interaction.  相似文献   

11.
Evidence for sperm-borne proteolytic enzymes exposed during the acrosome reaction in sea urchin sperm has been accumulating. To investigate the possible role(s) such enzymes have in fertilization, we studied the effects of several protease inhibitors on sperm-related events. Soybean trypsin inhibitor, Nα-p-tosyl-l-lysine, chloromethyl ketone, phenylmethylsulfonyl fluoride, and chymostatin neither reduced the number of acrosome reactions nor interfered with gamete binding. p-Nitrophenyl-p′-guanidinobenzoate caused sperm to fuse into irregular clumps, rendering them unable to fertilize eggs. However, l-1-tosylamide-2-phenylethyl chloromethyl ketone (TPCK), an inhibitor of chymotrypsin, prevented the acrosome reaction in Strongylocentrotus purpuratus, S. droebachiensis, and Lytechinus pictus. The effects of TPCK on sperm in subsequent steps of fertilization were also investigated. First, gamete binding assays were performed on fixed eggs. This precluded any effects TPCK might have had on egg-derived secretions (e.g., proteases). Binding of prereacted sperm occurred with both fixed and living eggs. However, fertilization of living eggs in the presence of TPCK was greatly reduced, even though sperm had been prereacted with egg jelly. Vitelline coats were then removed from eggs by trypsin treatment. Eggs in TPCK fertilized and developed normally after the above treatment. These observations are consistent with the hypothesis of a sperm protease participating in the acrosome reaction and the penetration of the egg vitelline coat in the sea urchin.  相似文献   

12.

Background

Canonical serine protease inhibitors commonly bind to their targets through a rigid loop stabilised by an internal hydrogen bond network and disulfide bond(s). The smallest of these is sunflower trypsin inhibitor (SFTI-1), a potent and broad-range protease inhibitor. Recently, we re-engineered the contact β-sheet of SFTI-1 to produce a selective inhibitor of kallikrein-related peptidase 4 (KLK4), a protease associated with prostate cancer progression. However, modifications in the binding loop to achieve specificity may compromise structural rigidity and prevent re-engineered inhibitors from reaching optimal binding affinity.

Methodology/Principal Findings

In this study, the effect of amino acid substitutions on the internal hydrogen bonding network of SFTI were investigated using an in silico screen of inhibitor variants in complex with KLK4 or trypsin. Substitutions favouring internal hydrogen bond formation directly correlated with increased potency of inhibition in vitro. This produced a second generation inhibitor (SFTI-FCQR Asn14) which displayed both a 125-fold increased capacity to inhibit KLK4 (K i = 0.0386±0.0060 nM) and enhanced selectivity over off-target serine proteases. Further, SFTI-FCQR Asn14 was stable in cell culture and bioavailable in mice when administered by intraperitoneal perfusion.

Conclusion/Significance

These findings highlight the importance of conserving structural rigidity of the binding loop in addition to optimising protease/inhibitor contacts when re-engineering canonical serine protease inhibitors.  相似文献   

13.
A metallo-endopeptidase that catalyzes at near neutral pH the hydrolysis of certain polypeptides was purified from rat kidney microsomes by a simplified procedure using affinity chromatography on Sepharose 4B coupled with insulin B chain. The purified enzyme showed a single component by chromatography on diethylaminoethyl cellulose and by gel filtration on a Sephadex G-200 column. The native enzyme has a molecular weight of approximately 213,000. Studies on its substrate specificity showed that the purified enzyme rapidly degrades insulin B chain, glucagon, adrenocorticotropin, and, at a significantly lower rate, insulin A chain. The enzyme has a very weak or no activity toward ribonuclease and vasopressin. In contrast, the enzyme does not degrade denatured hemoglobin, bovine serum albumin, insulin (nano- or micromolar), oxytocin, furylacryloylglycyl-leucine amide (FAGLA), synthetic substrates of cathepsin C (β-napthalamides of glycine-l-arginine and l-histidine-l-serine), or synthetic substrates of aminopeptidases (l-arginine- or l-glutamic acid-β-napthylamide). The enzyme degrades reduced or oxidized B chain at about the same rate, but S-sulfonated B chain is degraded at a markedly lower rate. The effect of several potential activators and inhibitors on the enzyme's activity was investigated. Activity of the enzyme is markedly inhibited by chelating agents (EDTA and o-phenanthroline) and, modestly, by high concentrations of citrate and histidine. Activity of the enzyme is also markedly inhibited by simple thiol compounds (dithiothreitol, glutathione, and mercaptoethanol), but not by sulfhydryl reagents (N-ethylmaleimide or iodoacetate). The inactive apoenzyme, prepared by treatment of the enzyme with EDTA followed by dialysis, was reactivated by Zn2+ > Ca2+, minimally by Cu2+, but not by Hg2+. Some anions (phosphate, borate, and bicarbonate) were strongly inhibitory, but chloride had no effect. The following agents were found to have no effect: soybean and lima bean trypsin inhibitors, N?-tosyl-l-phenylalanine chloromethyl ketone (TPCK), Nα,?-tosyl-l-lysine chloromethyl ketone (TLCK), aprotinin (Trasylol), phenylmethylsulfonyl fluoride (a serine protease inhibitor), 1-methyl histidine, 3-methyl histidine, histamine, imidazole, and heparin.  相似文献   

14.
Prostasin or human channel‐activating protease 1 has been reported to play a critical role in the regulation of extracellular sodium ion transport via its activation of the epithelial cell sodium channel. Here, the structure of the extracellular portion of the membrane associated serine protease has been solved to high resolution in complex with a nonselective d‐FFR chloromethyl ketone inhibitor, in an apo form, in a form where the apo crystal has been soaked with the covalent inhibitor camostat and in complex with the protein inhibitor aprotinin. It was also crystallized in the presence of the divalent cation Ca+2. Comparison of the structures with each other and with other members of the trypsin‐like serine protease family reveals unique structural features of prostasin and a large degree of conformational variation within specificity determining loops. Of particular interest is the S1 subsite loop which opens and closes in response to basic residues or divalent ions, directly binding Ca+2 cations. This induced fit active site provides a new possible mode of regulation of trypsin‐like proteases adapted in particular to extracellular regions with variable ionic concentrations such as the outer membrane layer of the epithelial cell.  相似文献   

15.
The crystal structure of the extracellular bacterial serine protease α-lytic protease (αLP) has been solved at 0.83 Å resolution at pH 8. This ultra-high resolution structure allows accurate analysis of structural elements not possible with previous structures. Hydrogen atoms are visible, and confirm active-site hydrogen-bonding interactions expected for the apo enzyme. In particular, His57 Nδ1 participates in a normal hydrogen bond with Asp102 in the catalytic triad, with a hydrogen atom visible 0.83(±0.06) Å from the His Nδ1. The catalytic Ser195 occupies two conformations, one corresponding to a population of His57 that is doubly protonated, the other to the singly protonated His57. Based on the occupancy of these conformations, the pKa of His57 is calculated to be ∼8.8 when a sulfate ion occupies the active site. This 0.83 Å structure has allowed critical analysis of geometric distortions within the structure. Interestingly, Phe228 is significantly distorted from planarity. The distortion of Phe228, buried in the core of the C-terminal domain, occurs at an estimated energetic cost of 4.1 kcal/mol. The conformational space for Phe228 is severely limited by the presence of Trp199, which prevents Phe228 from adopting the rotamer observed in many other chymotrypsin family members. In αLP, the only allowed rotamer leads to the deformation of Phe228 due to steric interactions with Thr181. We hypothesize that tight packing of co-evolved residues in this region, and the subsequent deformation of Phe228, contributes to the high cooperativity and large energetic barriers for folding and unfolding of αLP. The kinetic stability imparted by the large, cooperative unfolding barrier plays a critical role in extending the lifetime of the protease in its harsh environment.  相似文献   

16.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70°C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

17.
We determined some biochemical properties of Oulema melanopus larval gut proteases. We found adult midgut enzyme preparations yielded results similar to whole‐larval preparations, permitting studies of the very small whole‐larval preparations. Protein preparations were analyzed using FITC–casein as a substrate. Acidic pH is optimal for proteolytic activity (range 3.0–4.0). Cysteine protease activity increased at acidic pH and in the presence of β‐mercaptoethanol. Protease activities at all pH values were maximal at 45°C. Enzyme activity in larval preparations was inhibited by addition of Fe2+, Ca2+, Mg2+, Zn2+, and K+ (10 mM). Fe2+ and Zn2+ significantly decreased enzyme activity at all pH values, Ca2+ and Mg2+ at pH 6.2 and Mg2+ at pH 4.0. Inhibitors, including pepstatin A, showed the greatest inhibition at pH 4.0; phenylmethylsulfonyl fluoride, N‐p‐tosyl‐l‐phenylalanine chloromethyl ketone at pH 6.2; and phenylmethylsulfonyl fluoride, Nα‐tosyl‐l‐lysine chloromethyl ketone hydrochloride, N‐p‐tosyl‐l‐phenylalanine chloromethyl ketone, trans‐epoxysuccinyl‐l‐leucylamido‐(4‐guanidino) butane at pH of 7.6. Inhibition assays indicated that cysteine, aspartyl (cathepsin D), serine (trypsin, chymotrypsin‐like) proteases and metalloproteases act in cereal leaf beetle digestion.  相似文献   

18.
A serine protease inhibitor with a molecular mass of 6106±2Da (designated as InhVJ) was isolated from the tropical anemone Radianthus macrodactylus by a combination of liquid chromatography methods. The molecule of InhVJ consists of 57 amino acid residues, has three disulfide bonds, and contains no Met or Trp residues. The N-terminal amino acid sequence of the inhibitor (19 aa residues) was established. It was shown that this fragment has a high degree of homology with the N-terminal amino acid sequences of serine protease inhibitors from other anemone species, reptiles, and mammals. The spatial organization of the inhibitor at the levels of tertiary and secondary structures was studied by the methods of UV and CD spectroscopy. The specific and molar absorption coefficients of InhVJ were determined. The percentage of canonical secondary structure elements in the polypeptide was calculated. The inhibitor has a highly ordered tertiary structure and belongs to mixed α/β-or α + β polypeptides. It was established that InhVJ is highly specific toward trypsin (K i 2.49 × 10?9 M) and α-chymotrypsin (K i 2.17 × 10?8 M) and does not inhibit other proteases, such as thrombin, kallikrein, and papain. The inhibitor InhVJ was assigned to the family of the Kunitz inhibitor according to its physicochemical properties.  相似文献   

19.
X-ray crystallography has been used to determine the 3D structures of two complexes between Streptomyces griseus proteinase B (SGPB), a bacterial serine proteinase, and backbone variants of turkey ovomucoid third domain (OMTKY3). The natural P1 residue (Leu18I) has been substituted by a proline residue (OMTKY3-Pro18I) and in the second variant, the peptide bond between Thr17I and Leu18I was replaced by an ester bond (OMTKY3-psi[COO]-Leu18I). Both variants lack the P1 NH group that donates a bifurcated hydrogen bond to the carbonyl O of Ser214 and O(gamma) of the catalytic Ser195, one of the common interactions between serine proteinases and their canonical inhibitors. The SGPB:OMTKY3-Pro18I complex has many structural differences in the vicinity of the S1 pocket when compared with the previously determined structure of SGPB:OMTKY3-Leu18I. The result is a huge difference in the DeltaG degrees of binding (8.3 kcal/mol), only part of which can be attributed to the missing hydrogen bond. In contrast, very little structural difference exists between the complexes of SGPB:OMTKY3-psi[COO]-Leu18I and SGPB:OMTKY3-Leu18I, aside from an ester O replacing the P1 NH group. Therefore, the difference in DeltaG degrees, 1.5 kcal/mol as calculated from the measured equilibrium association constants, can be attributed to the contribution of the P1 NH hydrogen bond toward binding. A crystal structure of OMTKY3 having a reduced peptide bond between P1 Leu18I and P'1 Asp19I, (OMTKY3-psi[CH2NH2+]-Asp19I) has also been determined by X-ray crystallography. This variant has very weak association equilibrium constants with SGPB and with chymotrypsin. The structure of the free inhibitor suggests that the reduced peptide bond has not introduced any major structural changes in the inhibitor. Therefore, its poor ability to inhibit serine proteinases is likely due to the disruptions of the canonical interactions at the oxyanion hole.  相似文献   

20.
Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and ∼10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic S1 pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号