首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary A spontaneous mutant was isolated that harbors a weak suppressing activity towards a UAG mutation, together with an inability to grow at 43° C in rich medium. The mutation is shown to be associated with an increased misreading of UAG at certain codon contexts and UAA. UGA, missense or frameshift mutations do not appear to be misread to a similar extent. The mutation gives an increased efficiency to several amber tRNA suppressors with-out increasing their ambiguity towards UAA. The ochre suppressors SuB and Su5 are stimulated in their reading of both UAG and UAA with preference for UAG. An opal suppressor is not affected. The effect of the mutation on the efficiency of amber and ochre suppressors is dependent on the codon context of the nonsense codon.The mutated gene (uar) has been mapped and found to be recessive both with respect to suppressor-enhancing ability as well as for temperature sensitivity. The phenotype is partly suppressed by the ochre suppressor SuC. It is suggested that uar codes for a protein, which is involved in translational termination at UAG and UAA stop codons.  相似文献   

2.
Earlier studies showed that the 2-aminopurine-induced mutation rate at a particular base pair can be influenced by the base adjacent to, or one additional base-pair removed from, the measured site (Koch, 1971). The present study extends to 0.3 map unit (about 30 base pairs) the distance at which a single base-pair substitution can exert such an effect. A particular base-pair substitution (defined as a ts mutation in the rIIA gene of bacteriophage T4) reduces the spontaneous, 2-aminopurine-induced and nitrous acid-induced reversions of an rIIA amber mutation approximately threefold. The ts mutation also reduces the 2-aminopurine-induced conversion of the corresponding ochre codon to amber (UAA → UAG) about twofold and to opal (UAA → UGA) about eightfold. The 2-aminopurine-induced reversion of the ochre codon to a glutamine codon (UAA → CAA), however, is not affected. Control experiments demonstrate that these observed reductions in mutation frequency do not result from unacceptable pathways of reversion in the presence of the ts allele.  相似文献   

3.
The ciliate Euplotes deviates from the universal genetic code by translating UGA as cysteine and using UAA and UAG as the termination codon. Here, we cloned and sequenced the Cathepsin B gene of Euplotes octocarinatus (Eo‐CTSB) which containing several in‐frame stop codons throughout the coding sequence. We provide evidences, based on 3′‐RACE method and Western blot, that the Eo‐CTSB gene is actively expressed. Comparison of the derived amino acid sequence with the homologs in other eukaryotes revealed that UAA and UAG may code for glutamine in Eo‐CTSB. These findings imply an evolutionary complexity of stop codon reassignment in eukaryotes.  相似文献   

4.
5.
6.
Translation of the RNA from the wild-type bacteriophages R17, MS2, and f2 in bacterial cell-free extracts containing an amber suppressor yields 30-40% of the synthetase with an approximate molecular weight of 63 500, slightly larger than the major synthetase product (63 000 daltons). The occurrence of the 63 500 dalton in vitro product is dependent on the presence of an amber suppressor, and we predict that it is due to read-through of a UAG termination codon at the end of the synthetase gene. Previous results of Capecchi and Klein (Nature, 226, 1029-1033, 1070) showed that antibodies to both release factors RF1 and RF2 are required to block release of synthetase, suggesting that synthetase is released at a UAA codon. If the interpretations of both experiments are correct, the termination and release may not be synonomous and may be spatially separated. In addition there is the unexplained fact that 7% of the synthetase made in vitro in both su+ and su- extracts with either R17, MS2 or f2 as template has an apparent molecular weight of 66 000.  相似文献   

7.
We previously reassigned the amber UAG stop triplet as a sense codon in Escherichia coli by expressing a UAG-decoding tRNA and knocking out the prfA gene, encoding release factor 1. UAG triplets were left at the ends of about 300 genes in the genome. In the present study, we showed that the detrimental effect of UAG reassignment could be alleviated by increasing the efficiency of UAG translation instead of reducing the number of UAGs in the genome. We isolated an amber suppressor tRNA(Gln) variant displaying enhanced suppression activity, and we introduced it into the prfA knockout strain, RFzero-q, in place of the original suppressor tRNA(Gln). The resulting strain, RFzero-q3, translated UAG to glutamine almost as efficiently as the glutamine codons, and it proliferated faster than the parent RFzero-q strain. We identified two major factors in this growth enhancement. First, the sucB gene, which is involved in energy regeneration and has two successive UAG triplets at the end, was expressed at a higher level in RFzero-q3 than RFzero-q. Second, the ribosome stalling that occurred at UAG in RFzero-q was resolved in RFzero-q3. The results revealed the importance of "backup" stop triplets, UAA or UGA downstream of UAG, to avoid the deleterious impact of UAG reassignment on the proteome.  相似文献   

8.
Strains of the yeast Saccharomyces cerevisiae that contain highly efficient amber (UAG) suppressors grow poorly on nutrient medium, while normal or nearly normal growth rates are observed when these strains lose the supressors or when the suppressors are mutated to lower efficiencies. The different growth rates account for the accumulation of mutants with lowered efficiencies in cultures of strains with highly efficient amber suppressors. Genetic analyses indicate that one of the mutations with a lowered efficiency of suppression is caused by an intragenic mutation of the amber supressor. The inhibition of growth caused by excessive suppression is expected to be exacerbated when appropriate suppressors are combined together in haploid cells if two suppressors act with a greater efficiency than a single suppressor. Such retardation of growth is observed with combinations of two UAA (ochre) suppressors (Gilmore 1967) and with combinations of two UAG suppressors when the efficiencies of each of the suppressors are within a critical range. In contrast, combinations of a UAA suppressor and a UAG suppressor do not affect growth rate. Apparently while either excessive UAA or excessive UAG suppression is deleterious to yeast, a moderate level of simultaneous UAA and UAG suppression is not.  相似文献   

9.
10.
Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies.  相似文献   

11.
Analysis of specific misreading in Escherichia coli   总被引:10,自引:0,他引:10  
The pattern of specific misreading by nonsense suppressors has been investigated using nonsense mutants in the rIIB gene of phage T4 and in the lacZ gene of Escherichia coli. It is shown that a su+ transfer RNA which reads UAG also misreads UAA but not UGA, a su+ tRNA which reads UAA (while it also reads UAG by wobble) misreads UGA and a su+ tRNA which reads UGA also probably misreads UAA but not UAG.These specific types of errors in translation occur in the absence of streptomycin. The addition of the drug raises their level without altering the pattern described. A ribosomal mutation str A reduces the level of specific misreading; by contrast, a ram mutation strongly increases this level. In all cases the specific pattern is not affected.The rate of specific misreading of nonsense codons in different cases ranges from less than 0.001% to more than 3%. Since the frequency of misreading is sitespecific (unpublished observations), the rates obtained cannot be extrapolated to any other codon at any other site.  相似文献   

12.
13.
14.
A pool of 84-nt RNAs containing a randomized sequence of 50 nt was selected against gel-immobilized Escherichia coli release factor 1 (RF-1) responsible for translation termination at amber (UAG) stop codon. The strongest aptamer (class II-1) obtained from 43 clones bound to RF-1, but not to UAA/UGA-targeting RF-2, with Kd = 30+/-6 nM (SPR). A couple of unpaired hairpin domains in the aptamer were suggested as the sites of attachment of RF-1. By binding to and hence inhibiting the action of RF-1 specifically or bio-orthogonally, aptamer class II-1 enhanced the amber suppression efficiency in the presence of an anticodon-adjusted (CUA) suppressor tRNA without practically damaging the protein translation machinery of the cell-free extract of E. coli, as confirmed by the translation of amber-mutated (gfp(amber141) or gfp(amber178)) and wild-type (gfp(wild)) genes of GFP.  相似文献   

15.
The emergence of HBe-minus hepatitis B virus (HBV) mutants, usually through a UAG nonsense mutation at codon 28 of the precore region, helps the virus to survive the anti-HBe immune response of the host. Host and viral factors that predispose to the emergence of such mutants are not well characterized. The fact that the precore region forms a hairpin structure essential for the packaging of viral pregenomic RNA may explain the extremely high prevalence of the UAG mutation at codon 28. It converts a wobble U-G pair in the packaging signal between nucleotide 3 of codon 15 (CCU) and nucleotide 2 of codon 28 (UGG) into a U-A pair. Since genotype A of HBV has a CCC sequence at codon 15, the UAG mutation would, instead, disrupt a C-G pair present in the wild-type virus. This alteration was shown by transfection experiments to greatly compromise the packaging of pregenomic RNA. The implication of this finding was elucidated by molecular epidemiological studies. Genotype A was found to be the most prevalent genotype in the wild-type virus populations in France but was found in only 1 of the 46 isolates of HBe-minus mutants found there. These mutants were contributed chiefly by genotype D, the second most prevalent genotype in France, which is characterized by a CCU sequence at codon 15. The role of the single nucleotide at codon 15 was confirmed by the finding of the single genotype A isolate in which both wild-type and mutant viruses were present. Interestingly, nearly all of the mutants had a codon 15 sequence of CCU instead of the CCC present in the wild-type viruses. Our results suggest that genotype A of HBV rarely circulates as HBe-minus mutants, probably because of a requirement for a simultaneous sequence change at codon 15. These data, together with the virtual absence of genotype A in the Chinese samples examined, may provide some insights into the uneven prevalence of HBe-minus mutants in the world.  相似文献   

16.
Nonsense suppressor tRNAs have been suggested as potential agents for human somatic gene therapy. Recent work from this laboratory has described significant effects of 3' codon context on the efficiency of human nonsense suppressors. A rapid increase in the number of reports of human diseases caused by nonsense codons, prompted us to determine how the spectrum of mutation to either UAG, UAA or UGA codons and their respective 3' contexts, might effect the efficiency of human suppressor tRNAs employed for purposes of gene therapy. This paper presents a survey of 179 events of mutations to nonsense codons which cause human germline or somatic disease. The analysis revealed a ratio of approximately 1:2:3 for mutation to UAA, UAG and UGA respectively. This pattern is similar, but not identical, to that of naturally occurring stop codons. The 3' contexts of new mutations to stop were also analysed. Once again, the pattern was similar to the contexts surrounding natural termination signals. These results imply there will be little difference in the sensitivity of nonsense mutations and natural stop codons to suppression by nonsense suppressor tRNAs. Analysis of the codons altered by nonsense mutations suggests that efforts to design human UAG suppressor tRNAs charged with Trp, Gln, and Glu; UAA suppressors charged with Gln and Glu, and UGA suppressors which insert Arg, would be an essential step in the development of suppressor tRNAs as agents of human somatic gene therapy.  相似文献   

17.
Translational readthrough of nonsense codons is seen not only in organisms possessing one or more tRNA suppressors but also in strains lacking suppressors. Amber suppressor tRNAs have been reported to suppress only amber nonsense mutations, unlike ochre suppressors, which can suppress both amber and ochre mutations, essentially due to wobble base pairing. In an Escherichia coli strain carrying the lacZU118 episome (an ochre mutation in the lacZ gene) and harboring the supE44 allele, suppression of the ochre mutation was observed after 7 days of incubation. The presence of the supE44 lesion in the relevant strains was confirmed by sequencing, and it was found to be in the duplicate copy of the glnV tRNA gene, glnX. To investigate this further, an in vivo luciferase assay developed by D. W. Schultz and M. Yarus (J. Bacteriol. 172:595-602, 1990) was employed to evaluate the efficiency of suppression of amber (UAG), ochre (UAA), and opal (UGA) mutations by supE44. We have shown here that supE44 suppresses ochre as well as opal nonsense mutations, with comparable efficiencies. The readthrough of nonsense mutations in a wild-type E. coli strain was much lower than that in a supE44 strain when measured by the luciferase assay. Increased suppression of nonsense mutations, especially ochre and opal, by supE44 was found to be growth phase dependent, as this phenomenon was only observed in stationary phase and not in logarithmic phase. These results have implications for the decoding accuracy of the translational machinery, particularly in stationary growth phase.Translation termination is mediated by one of the three stop codons (UAA, UAG, or UGA). When such stop codons arise in coding sequences due to mutations, referred to as nonsense mutations, they lead to abrupt arrest of the translation process. However, the termination efficiency of such nonsense codons is not 100%, as certain tRNAs have the ability to read these nonsense codons. Genetic code ambiguity is seen in several organisms. Stop codons have been shown to have alternate roles apart from translation termination. In organisms from all three domains of life, UGA encodes selenocysteine through a specialized mechanism. In Methanosarcinaceae, UAG encodes pyrrolysine (3). UAA and UAG are read as glutamine codons in some green algae and ciliates such as Tetrahymena and Diplomonads (24), and UAG alone encodes glutamine in Moloney murine leukemia virus (32). UGA encodes cysteine in Euplotes; tryptophan in some ciliates, Mycoplasma species, Spiroplasma citri, Bacillus, and tobacco rattle virus; and an unidentified amino acid in Pseudomicrothorax dubius and Nyctotherus ovalis (30). In certain cases the context of the stop codon in translational readthrough has been shown to play a role; for example, it has been reported that in vitro in tobacco mosaic virus, UAG and UAA are misread by tRNATyr in a highly context-dependent manner (34, 9).Termination suppressors are of three types, i.e., amber, ochre, and opal suppressors, which are named based on their ability to suppress the three stop codons. Amber suppressors can suppress only amber codons, whereas ochre suppressors can suppress ochre codons (by normal base pairing) as well as amber codons (by wobbling) and opal suppressors can read opal and UGG tryptophan codon in certain cases. As described by Sambrook et al. (27), a few amber suppressors can also suppress ochre mutations by wobbling. The suppression efficiency varies among these suppressors, with amber suppressors generally showing increased efficiency over ochre and opal suppressors. supE44, an amber suppressor tRNA, is an allele of and is found in many commonly used strains of Escherichia coli K-12. Earlier studies have shown that supE44 is a weak amber suppressor and that its efficiency varies up to 35-fold depending on the reading context of the stop codon (8).Translational accuracy depends on several factors, which include charging of tRNAs with specific amino acids, mRNA decoding, and the presence of antibiotics such as streptomycin and mutations in ribosomal proteins which modulate the fidelity of the translational machinery. Among these, mRNA decoding errors have been reported to occur at a frequency ranging from about 10−3 to 10−4 per codon. Translational misreading errors also largely depend on the competition between cognate and near-cognate tRNA species. Poor availability of cognate tRNAs increases misreading (18).Several studies with E. coli and Saccharomyces cerevisiae have shown the readthrough of nonsense codons in suppressor-free cells. In a suppressor-free E. coli strain, it has been shown in vitro that glutamine is incorporated at the nonsense codons UAG and UAA (26). It has been reported that overexpression of wild-type tRNAGln in yeast suppresses amber as well as ochre mutations (25). In this study, we have confirmed the presence of an amber suppressor mutation in the glnX gene in a supE44 strain by sequence analysis. This was done essentially because we observed that supE44 could also suppress lacZ ochre mutations, albeit inefficiently. On further investigation using an in vivo luciferase reporter assay system for tRNA-mediated nonsense suppression (28), we found that the efficiency of suppression of amber lesion by supE44 is significantly higher than that reported previously in the literature. An increased ability to suppress ochre and opal nonsense mutations was observed in cells bearing supE44 compared to in the wild type. Such an effect was observed only in the stationary phase and was abolished in logarithmic phase.  相似文献   

18.
19.
Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5′ nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNAGln were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code.  相似文献   

20.
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号