首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computer program designed to fold a peptide chain consisting solely of helical segments and connecting links of known length is described and evaluated. This study is a detailed extension of certain aspects of the earlier work of Ptitsyn &; Rashin (1975). Possible interaction sites on the helices are sequence dependent and are calculated as described by Richmond &; Richards (1978) using probable changes in solvent contact area as a guide. The helices are then paired according to the list of potential sites, with each helix being paired at least once. The lists of pairings are then examined geometrically, each site having a defined dihedral helix axis angle, a specified inter-helix axis distance, and defined rotations, when required, about each helix axis. Two simplified filters are used: (1) lengths of connecting links must be equal to or greater than the end-to-end distances of the helices; and (2) non-paired helices must not collide. With myoglobin as a test example and only six of the eight helices being considered, a conformation space consisting of more than 3 × 108 structures was surveyed. The two filters reduced the acceptable structure list to 121. Slight readjustment of the parameters in the filters would have reduced this to 20 structures. Of these 20, one closely resembles the actual distribution of helices in myoglobin. The possible utility and pitfalls of this approach as part of an overall protein folding program are discussed.  相似文献   

2.
Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α3-β-α-β2 fold typical for all parvulin structures known so far, but with helix III being a short 310-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 310-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for 1H-15N-HSQC titrations. Again, the flexible region around 310-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases.  相似文献   

3.
 A novel C 2-symmetric ring-fluorinated hemin, 13,17-bis(2-carboxyethyl)-2,8,12,18-tetramethyl-3,7-difluoroporphyrinatoiron(III), has been synthesized and was incorporated into sperm whale apomyoglobin to investigate protein-induced rhombic perturbations on the electronic structure of the active site of myoglobin (Mb) using 19F NMR spectroscopy. NMR signals for 19F atoms introduced as substituents on the present heme in ferrous low-spin and high-spin and ferric low-spin complexes have been observed and their shifts sharply reflect not only the electronic nature of the heme iron, but also in-plane asymmetry of the heme electronic structure. The two-fold symmetric electronic structure of the ring-fluorinated hemin is clearly manifested in the 19F and 1H NMR spectra of its dicyano complex. The chemical equivalence of the two fluorine atoms of the heme is removed in the active site of myoglobin and the splitting of the two 19F NMR signals provides a quantitative probe for characterizing the rhombic perturbation of the heme electronic structure induced by the heme-protein interaction. The in-plane asymmetry of heme electronic structures in carbonmonoxy and deoxy Mbs have been analyzed for the first time on the basis of the shift difference between the two 19F NMR signals of the heme and is interpreted in terms of iron-ligand binding and/or the orbital ground state of the heme. A potential utility of 19F NMR, combined with the use of a symmetric fluorinated hemin, in characterizing the heme electronic structure of myoglobin in a variety of iron oxidation, spin, and ligation states, is presented. Received: 23 December 1999 / Accepted: 3 April 2000  相似文献   

4.
ATP-binding cassette (ABC) systems belong to a large superfamily of proteins that couple the energy released from ATP hydrolysis to a wide variety of cellular processes, including not only transport of various molecules, but also gene regulation, and DNA repair. Mutations in the bacterial uup gene, which encodes a cytosolic ABC ATPase, lead to an increase in the frequency of precise excision of transposons Tn10 and Tn5, suggesting a role of the Uup protein in DNA metabolism. Uup is a 72?kDa polypeptide which comprises two ABC domains, separated by a 75-residue linker, and a C-terminal domain (CTD) of unknown function. The Uup protein from Escherichia coli has been shown to bind DNA in vitro, and the CTD domain contributes to the DNA-binding affinity. We have produced and purified uniformly labeled 15N- and 15N/13C Uup CTD domain (region 528?C635), and assigned backbone and side-chains resonances using heteronuclear NMR spectroscopy. Secondary structure evaluation based on backbone chemical shifts is consistent with the presence of three ??-helices, including two long ones (residues 564?C590 and 601?C632), suggesting that Uup CTD may fold as an intramolecular coiled coil motif. This work provides the starting point towards determining the first atomic structure of a non-ATPase domain within the vast REG subfamily of ABC soluble ATPases.  相似文献   

5.
Correction to: The EMBO Journal (2001) 20, 7149–7159. doi:10.1093/emboj/20.24.7149Two different structures of the anti-σ factor T4 AsiA in its dimeric state have been reported, one by us and a second by Urbauer et al (2002). The principal distinction between these structures was in the monomer fold, which displayed an approximate mirror image relationship to one another. This difference prompted a re-examination of our AsiA structure in solution, leading us to conclude that our structure of the T4 AsiA dimer was incorrectly determined in the original report. The resolution of this discrepancy was driven by the solution of the AsiA structure in two new states: a free monomer and a monomer bound to conserved region 4 from Escherichia coli σ70 (EcSR4) (see report by Lambert et al in this issue (The EMBO Journal (2004) 23, 2952–2962). In each of these states, the chemical shifts for all atoms were similar to each other and very different from those observed in AsiA dimer, enabling a completely independent effort at the solution of the AsiA structure. The fold of AsiA determined in each of these new states was found to be very similar to that reported by Urbauer et al. Most convincing in this analysis were the 220 intermolecular NOEs observed between AsiA and EcSR4, which were only consistent with the fold reported by Urbauer et al. Both monomer states were further refined by residual dipolar coupling (RDC) analysis. We subsequently reanalyzed our original AsiA dimer NMR spectra and collected RDCs on the original dimer. No errors in chemical shift assignment were found and less than 4% of all NOEs needed to be reassigned for the fold of AsiA dimer to conform to the fold reported by Urbauer et al. This represented less than 3% of those NOEs between nonsequential residues in the polypeptide chain (17 NOEs in all); these NOEs were not previously appreciated to be ambiguous with respect to a mirror image fold. Figure 1 displays the revised structure and compares it to that of Urbauer et al. The coordinates of our structure with PDB accession code 1KA3 have been replaced. The PDB ID for the corrected AsiA dimer is 1TKV.Open in a separate windowFigure 1Comparison of recalculated structure of AsiA dimer to the structure of Urbauer et al (PDB accession code 1JR5). On the left is the recalculated structure family with a ribbon representation of the monomer shown at the bottom. On the right is the Cα trace of one model from 1JR5 and a ribbon representation at the bottom. The two structures are very similar to one another, with the exception of the position of helix A6. In 1JR5, the C-terminus is tucked against the back face of helices A1 and A4, while in our revised structures these restraints are not observed. Helix A6 in 1JR5 is also one turn shorter than that observed by us. Despite these differences, the two structures are in overall agreement.  相似文献   

6.
Although gastropod myoglobin has been extensively studied, there are knowledge gaps in its biological characteristics. We describe for the first time the presence of a myoglobin in the triturative stomach of Biomphalaria gastropods. We compared biochemical parameters of myoglobins of stomach and radular muscles of Biomphalaria glabrata and Biomphalaria tenagophila. Apomyoglobin and holomyoglobin were obtained. Myoglobin was the most abundant protein in the stomach (85.0%) and radular muscles (80.0%) of the two Biomphalaria species evaluated. The Molecular mass and isoeletric point of stomach myoglobins were 16,124.93 Da and 7.98 and 16.095.28 Da and 7.77 for B. glabrata and B. tenagophila, respectively. Stomach myoglobins of B. glabrata and B. tenagophila rate autoxidation were equal to 8.0 × 10−4 h−1 ± 0.0002 and 1.0 × 10−4 h−1 ± 0.00142, respectively. Analysis of N-terminal amino acid sequencing revealed that stomach myoglobins are blocked in this region for a chemical group. Concluding, the differences we observed in the biochemical properties of stomach and radular myoglobins of B. glabrata and B. tenagophila suggest they may be isoform representing an evolutionary event related to the adaptation of these proteins.  相似文献   

7.
Summary Sequence-specific backbone 1H and 15N resonance assignments have been made for 95% of the amino acids in sperm whale myoglobin, complexed with carbon monoxide (MbCO). Many assignments for side-chain resonances have also been obtained. Assignments were made by analysis of an extensive series of homonuclear 2D spectra, measured with unlabeled protein, and both 2D and 3D 1H-15N-correlated spectra obtained from uniformly 15N-labeled myoglobin. Patterns of medium-range NOE connectivities indicate the presence of eight helices in positions that are very similar to those found in the crystal structures of sperm whale myoglobin. The resonance assignments of MbCO form the basis for determination of the solution structure and for hydrogen-exchange measurements to probe the stability and folding pathways of myoglobin. They will also form a basis for assignment of the spectra of single-site mutants with altered ligand-binding properties.  相似文献   

8.
Analysis of electron-transfer (ET) kinetics data obtained from experiments on Ru-modified proteins (azurin, cytochrome c, myoglobin) and the bacterial photosynthetic reaction center reveals that distant donor-acceptor electronic couplings depend upon the secondary structure of the intervening polypeptide matrix. The β-sheet azurin structure efficiently and isotropically mediates coupling with an exponential distance-decay constant of 1.1?Å–1. The experimentally derived distance-decay constant of 1.4?Å–1 for long-range ET in myoglobin and the reaction center suggests that hydrogen-bond couplings are weaker through α helices than across β sheets. The donor-acceptor interactions of systems with comparable tunneling energies fall into two coupling zones: the β zone (bounded by distance-decay constants of 0.9?and 1.15 Å–1) includes all the β-sheet (azurin) couplings and all but one coupling in cytochrome c; the α zone (boundaries: 1.25 and 1.6?Å–1) includes less strongly coupled donor-acceptor pairs in myoglobin and the reaction center as well as a relatively weakly coupled pair in cytochrome c.  相似文献   

9.
The crystal structure of GcnA, an N-acetyl-β-d-glucosaminidase from Streptococcus gordonii, was solved by multiple wavelength anomalous dispersion phasing using crystals of selenomethionine-substituted protein. GcnA is a homodimer with subunits each comprised of three domains. The structure of the C-terminal α-helical domain has not been observed previously and forms a large dimerisation interface. The fold of the N-terminal domain is observed in all structurally related glycosidases although its function is unknown. The central domain has a canonical (β/α)8 TIM-barrel fold which harbours the active site. The primary sequence and structure of this central domain identifies the enzyme as a family 20 glycosidase. Key residues implicated in catalysis have different conformations in two different crystal forms, which probably represent active and inactive conformations of the enzyme. The catalytic mechanism for this class of glycoside hydrolase, where the substrate rather than the enzyme provides the cleavage-inducing nucleophile, has been confirmed by the structure of GcnA complexed with a putative reaction intermediate analogue, N-acetyl-β-d-glucosamine-thiazoline. The catalytic mechanism is discussed in light of these and other family 20 structures.  相似文献   

10.
We survey the two-state to downhill folding transition by examining 20 λ6-85? mutants that cover a wide range of stabilities and folding rates. We investigated four new λ6-85? mutants designed to fold especially rapidly. Two were engineered using the core remodeling of Lim and Sauer, and two were engineered using Ferreiro et al.'s frustratometer. These proteins have probe-dependent melting temperatures as high as 80 °C and exhibit a fast molecular phase with the characteristic temperature dependence of the amplitude expected for downhill folding. The survey reveals a correlation between melting temperature and downhill folding previously observed for the β-sheet protein WW domain. A simple model explains this correlation and predicts the melting temperature at which downhill folding becomes possible. An X-ray crystal structure with a 1.64-Å resolution of a fast-folding mutant fragment shows regions of enhanced rigidity compared to the full wild-type protein.  相似文献   

11.
Sterol carrier protein-2 (SCP-2) is a nonspecific lipid-binding protein expressed ubiquitously in most organisms. Knockdown of SCP-2 expression in mosquitoes has been shown to result in high mortality in developing adults and significantly lowered fertility. Thus, it is of interest to determine the structure of mosquito SCP-2 and to identify its mechanism of lipid binding. We report here high quality three-dimensional solution structures of SCP-2 from Aedes aegypti determined by NMR spectroscopy in its ligand-free state (AeSCP-2) and in complex with palmitate. Both structures have a similar mixed α/β fold consisting of a five-stranded β-sheet and four α-helices arranged on one side of the β-sheet. Ligand-free AeSCP-2 exhibited regions of structural heterogeneity, as evidenced by multiple two-dimensional 15N heteronuclear single-quantum coherence peaks for certain amino acids; this heterogeneity disappeared upon complex formation with palmitate. The binding of palmitate to AeSCP-2 was found to decrease the backbone mobility of the protein but not to alter its secondary structure. Complex formation is accompanied by chemical shift differences and a loss of mobility for residues in the loop between helix αI and strand βA. The structural differences between the αI and βA of the mosquito and the vertebrate SCP-2s may explain the differential specificity (insect versus vertebrate) of chemical inhibitors of the mosquito SCP-2.  相似文献   

12.
The Gram-positive pathogen Streptococcus agalactiae, known as group B Streptococcus (GBS), is the leading cause of bacterial septicemia, pneumonia, and meningitis among neonates. GBS assembles two types of pili—pilus islands (PIs) 1 and 2—on its surface to adhere to host cells and to initiate colonization for pathogenesis. The GBS PI-1 pilus is made of one major pilin, GBS80, which forms the pilus shaft, and two secondary pilins, GBS104 and GBS52, which are incorporated into the pilus at various places. We report here the crystal structure of the 35-kDa C-terminal fragment from GBS80, which is composed of two IgG-like domains (N2-N3). The structure was solved by single-wavelength anomalous dispersion using sodium-iodide-soaked crystals and diffraction data collected at the home source. The N2 domain exhibits a cnaA/DEv-IgG fold with two calcium-binding sites, while the N3 domain displays a cnaB/IgG-rev fold. We have built a model for full-length GBS80 (N1, N2, and N3) with the help of available homologous major pilin structures, and we propose a model for the GBS PI-1 pilus shaft. The N2 and N3 domains are arranged in tandem along the pilus shaft, whereas the respective N1 domain is tilted by approximately 20° away from the pilus axis. We have also identified a pilin-like motif in the minor pilin GBS52, which might aid its incorporation at the pilus base.  相似文献   

13.
《FEBS letters》2014,588(24):4720-4729
Sialyltransferase structures fall into either GT-A or GT-B glycosyltransferase fold. Some sialyltransferases from the Photobacterium genus have been shown to contain an additional N-terminal immunoglobulin (Ig)-like domain. Photobacterium damselae α2–6-sialyltransferase has been used efficiently in enzymatic and chemoenzymatic synthesis of α2–6-linked sialosides. Here we report three crystal structures of this enzyme. Two structures with and without a donor substrate analog CMP-3F(a)Neu5Ac contain an immunoglobulin (Ig)-like domain and adopt the GT-B sialyltransferase fold. The binary structure reveals a non-productive pre-Michaelis complex, which are caused by crystal lattice contacts that prevent the large conformational changes. The third structure lacks the Ig-domain. Comparison of the three structures reveals small inherent flexibility between the two Rossmann-like domains of the GT-B fold.  相似文献   

14.
Myoglobin was isolated from the radular muscle of the archaeogastropod mollusc Turbo cornutus (Turbinidae). This myoglobin is a monomer carrying one protoheme group; the molecular mass was estimated by SDS–PAGE to be about 40 kDa, 2.5 times larger than that of usual myoglobin. The cDNA-derived amino acid sequence of 375 residues was determined, of which 327 residues were identified directly by chemical sequencing of internal peptides. The amino acid sequence of Turbo myoglobin showed no significant homology with any other usual 16-kDa globins, but showed 36% identity with the myoglobin from Sulculus diversicolor (Haliotiidae) and 27% identity with human indoleamine 2,3-dioxygenase, a tryptophan-degrading enzyme containing heme. Thus, the Turbo myoglobin can be counted among the myoglobins which evolved from the same ancestor as that of indoleamine 2,3-dioxygenase. The absorbance ratio of γ to CT maximum (γ/CT) of Turbo metmyoglobin was 17.8, indicating that this myoglobin probably possesses a histidine residue near the sixth coordination position of heme iron. The Turbo myoglobin binds oxygen reversibly. Its oxygen equilibrium properties are similar to those of Sulculus myoglobin, giving P 50 = 3.5 mm Hg at pH 7.4 and 20°C. The pH dependence of autoxidation of Turbo oxymyoglobin was quite different from that of mammalian myoglobin, suggesting a unique protein folding around the heme cavity of Turbo myoglobin. A kinetic analysis of autoxidation indicates that the amino acid residue with pK a = 5.4 is involved in the reaction. The autoxidation reaction was enhanced markedly at pH 7.6, but not at pH 5.5 and 6.3 in the presence of tryptophan. We suggest that a noncatalytic binding site for tryptophan, in which several dissociation groups with pK a ≥ 7.6 are involved, remains in Turbo myoglobin as a relic of molecular evolution.  相似文献   

15.
Schizosaccharomyces pombe Rpn10 (SpRpn10) is a proteasomal ubiquitin (Ub) receptor located within the 19 S regulatory particle where it binds to subunits of both the base and lid subparticles. We have solved the structure of full-length SpRpn10 by determining the crystal structure of the von Willebrand factor type A domain and characterizing the full-length protein by NMR. We demonstrate that the single Ub-interacting motif (UIM) of SpRpn10 forms a 1:1 complex with Lys48-linked diUb, which it binds selectively over monoUb and Lys63-linked diUb. We further show that the SpRpn10 UIM binds to SpRpn12, a subunit of the lid subparticle, with an affinity comparable with Lys48-linked diUb. This is the first observation of a UIM binding other than a Ub fold and suggests that SpRpn12 could modulate the activity of SpRpn10 as a proteasomal Ub receptor.  相似文献   

16.
Structure of the tubulin dimer in zinc-induced sheets   总被引:8,自引:0,他引:8  
The structure of tubulin has been studied in projection by minimum beam electron microscopy and image processing of negatively stained zinc-induced sheets. The reconstructed images include data to 15 Å resolution.We report here a clear and reproducible 82 Å repeat arising from the arrangement of heterodimers in sheet aggregates of tubulin. This repeat is only observed in diffraction patterns from images recorded by minimum beam methods (10 to 20 e/Å2) and arises from small, but consistent, structural differences between two similar subunits believed to represent the two chemical species of tubulin monomer (Mr, 55,000). At higher electron doses (100 to 200 e/Å2), the additional information is lost or very much reduced, and only a repeat of 41 Å is observed, owing to the loss of distinction between monomers in the tubulin heterodimer.The sheets are composed of 49 Å wide, polar protofilaments, similar to those observed in microtubules; however, the interprotofilament packing is completely different in the two structures. In these sheets, adjacent protofilaments point and face in opposite directions; i.e. they are related by dyad-screw axes normal to the protofilament axes and in the plane of the sheet. Thus, the zinc-induced sheets are crystals of space group P21, with cell dimensions of about 97 Å × 82 Å, containing one tubulin heterodimer per asymmetric unit.Reconstructed images of four individual sheets, and their average, show the arrangement and shapes of the two heterodimers contained in each unit cell. The structure and packing of heterodimers in sheets are compared to those in opened out microtubules where all protofilaments point and face in the same direction.  相似文献   

17.
《Phytochemistry》1986,25(7):1735-1738
Thirteen alkaloids have been isolated from the leaves and from the stem bark of two varieties of Alstonia lenormandii: variety lenormandii and variety minutifolia from New Caledonia. They are 10,11-dimethoxy-1-methyldeacetylpicraline, its 3′,4′,5′-trimethoxybenzoate and its benzoate, 10,11-dimethoxy-1-methylpicraline, akuam-miline, picraline, lochnericine, 11-methoxyakuammicine, 11-methoxy- and 12-methoxycompactinervine, 12-methoxy-19α,20α-epoxyakuammicine, gentianine and 3′,4′,5′-trimethoxycinnamamide. The compactinervine which is methoxylated at C-12 was previously isolated from A. lanceolata and assigned the structure 10-methoxycompactinervine; this has been revised in the present work by the analysis of high field 1H and 13C NMR. The corresponding epoxide is a novel alkaloid isolated only in the minutifolia variety. Its structure has been established by spectral means and by chemical correlations.  相似文献   

18.
19.
Transfer RNA (tRNA) methylation is necessary for the proper biological function of tRNA. The N1 methylation of guanine at Position 9 (m1G9) of tRNA, which is widely identified in eukaryotes and archaea, was found to be catalyzed by the Trm10 family of methyltransferases (MTases). Here, we report the first crystal structures of the tRNA MTase spTrm10 from Schizosaccharomyces pombe in the presence and absence of its methyl donor product S-adenosyl-homocysteine (SAH) and its ortholog scTrm10 from Saccharomyces cerevisiae in complex with SAH. Our crystal structures indicated that the MTase domain (the catalytic domain) of the Trm10 family displays a typical SpoU-TrmD (SPOUT) fold. Furthermore, small angle X-ray scattering analysis reveals that Trm10 behaves as a monomer in solution, whereas other members of the SPOUT superfamily all function as homodimers. We also performed tRNA MTase assays and isothermal titration calorimetry experiments to investigate the catalytic mechanism of Trm10 in vitro. In combination with mutational analysis and electrophoretic mobility shift assays, our results provide insights into the substrate tRNA recognition mechanism of Trm10 family MTases.  相似文献   

20.
Ion conduction is an essential function for electrical activity in all organisms. The non-selective ion channel NaK was previously shown to adopt two stable conformations of the selectivity filter. Here, we present solid-state NMR measurements of NaK demonstrating a population shift between these conformations induced by changing the ions in the sample while the overall structure of NaK is not affected. We show that two K+-selective mutants (NaK2K and NaK2K-Y66F) suffer a complete loss of selectivity filter stability under Na+ conditions, but do not collapse into a defined structure. Widespread chemical shift perturbations are seen between the Na+ and K+ states of the K+-selective mutants in the region of the pore helix indicating structural changes. We conclude that the stronger link between the selectivity filter and the pore helix in the K+-selective mutants, compared to the non-selective wild-type NaK channel, reduces the ion-dependent conformational flexibility of the selectivity filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号