首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
M Iqbal  P Balaram 《Biochemistry》1981,20(25):7278-7284
270-MHz 1H NMR studies of the 11-21 suzukacillin fragment Boc-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-G) and its analogue Boc-Ala-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (11-A) have been carried out in CDCl3 and (CD3)2SO. The NH chemical shifts and their temperature coefficients have been measured as a function of peptide concentration in both solvents. It is established that replacement of Gln by Ala is without effect on backbone conformation. Both peptides adopt highly folded 310 helical conformations stabilized by seven intramolecular 4 leads to hydrogen bonds. Nonlinear temperature dependences are demonstrated for free NH groups in the Gln(1) peptide. Aggregation is mediated by intermolecular hydrogen bonds formed by solvent-exposed NH groups. A major role for the Gln side chain in peptide association is suggested by differences in the NMR behavior of the Gln(1) and Ala(1) peptides. For the Gln(1) peptide in CDCl3, the carboxamide side chain carbonyl group forms an intramolecular hydrogen bond to the peptide backbone, while the trans side chain NH shows evidence for intermolecular interactions. In (CD3)2SO, the cis carboxamide NH is involved in intermolecular hydrogen bonding. The possible role of the central Gln residue in stabilizing aggregates of peptide channel formers is discussed, and a model for hexameric association is postulated.  相似文献   

2.
The stereochemically constrained gamma amino acid residue gabapentin (1-(aminomethyl)cyclohexaneacetic acid, Gpn) has been incorporated into a host alpha-peptide sequence. The structure of a hybrid alphagammaalphaalphagammaalpha peptide, Boc-Leu-Gpn-Aib-Leu-Gpn-Aib-OMe in crystals reveals a continuous helical conformation stabilized by three intramolecular 4 --> 1 C(12) hydrogen bonds across the alphagamma/alphagamma segments and one C(10) hydrogen bond across the central alphaalpha segment. This conformation corresponds to an expanded analog of the canonical all-alpha polypeptide 3(10)-helix, with insertion of two additional backbone atoms at each gamma residue. Solvent dependence of NH chemical shifts in CDCl(3) solution are consistent with conformation in which the NH groups of Aib (3), Leu (4), Gpn (5), and Aib (6) are hydrogen bonded, a feature observed in the solid state. The nonsequential NOEs between Gpn (2) NH <--> Leu (4) NH and Gpn (2) NH <--> Gpn (5) NH support the presence of additional conformations in solution. Temperature-dependent line broadening of NH resonances confirms the occurrence of rapid exchange between multiple conformations at room temperature. Two conformational models which rationalize the observed nonsequential NOEs are presented, both of which contain three hydrogen bonds and are consistent with the known stereochemical preferences of the Gpn residue.  相似文献   

3.
The packing of peptide helices in crystals of the leucine-rich decapeptide Boc-Aib-Leu-Aib-Aib-Leu-Leu-Leu-Aib-Leu-Aib-OMe provides an example of ladder-like leucylleucyl interactions between neighboring molecules. The peptide molecule forms a helix with five 5----1 hydrogen bonds and two 4----1 hydrogen bonds near the C terminus. Three head-to-tail NH ... O = C hydrogen bonds between helices form continuous columns of helices in the crystal. The helicial columns associate in an antiparallel fashion, except for the association of Leu ... Leu side chains, which occurs along the diagonal of the cell where the peptide helices are parallel. The peptide, with formula C56H102N10O13, crystallizes in space group P2(1)2(1)2(1) with Z = 4 and cell parameters a = 16.774(3) A, b = 20.032(3) A and c = 20.117(3) A; overall agreement factor R = 10.7% for 2014 data with magnitude of F(obs) greater than 3 sigma (F); resolution 1.0 A.  相似文献   

4.
The incorporation of alpha-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib)3-OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven alpha-type hydrogen bonds in the middle and 3(10)-type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH...OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in alpha-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration. The space group is P2(1)2(1)2(1), with a = 9.964 (3) A, b = 20.117 (3) A, c = 39.311 (6) A, Z = 4, and dx = 1.127 g/cm3 for C64H106N13O16.1.33H2O. The final agreement factor R was 0.089 for 3667 data observed greater than 3 sigma(F) with a resolution of 0.9 A.  相似文献   

5.
Single crystal structures of host-guest peptides, (Pro-Hyp-Gly)(4)-Leu-Hyp-Gly-(Pro-Hyp-Gly)(5) (LOG1) and (Pro-Hyp-Gly)(4)- (Leu-Hyp-Gly)(2)-(Pro-Hyp-Gly)(4) (LOG2), have been determined at 1.6 A and 1.4 A resolution, respectively. In these crystals, the side chain conformations of the Leu residues were (+)gauche-trans. This conformational preference for the Leu side chain in the Leu-Hyp-Gly sequence was explained by stereochemical considerations together with statistical analysis of Protein Data Bank data. In the (+)gauche-trans conformation, the Leu side chain can protrude along the radial direction of the rod-like triple-helical molecule. One strong hydrophobic interaction of the Leu residue was observed between adjacent molecules in the LOG2 crystal. Because the Leu-Hyp-Gly sequence is one of the most frequently occurring triplets in Type I collagen, this strong hydrophobic interaction can be expected in a fibrillar structure of native collagen. All the Leu residues in the asymmetric unit of the LOG1 and LOG2 crystals had water molecules hydrogen bonded to their NH. These water molecules made three additional hydrogen bonds with the Hyp OH, the Gly O[double bond]C, and a water molecule in the second hydration shell, forming a tetrahedral coordination of hydrogen bonds, which allows a smaller mean-square displacement factor of this water oxygen atom than those of other water molecules. These hydrogen bonds stabilize the molecular and packing structures by forming one O[double bond]C(Gly)---W---OH(Hyp) intra-molecular linkage and two NH(Leu)---W---O[double bond]C(Gly) and NH(Leu)---W---OH(Hyp) inter-molecular linkages.  相似文献   

6.
The peptide Boc-Val-Val-Aib-Pro-Val-Val-Val-OMe has been synthesized to investigate the effect of introduction of a strong beta-turn promoting guest segment into an oligopeptide with a tendency to form extended structures. 1H-nmr studies in solution using analysis of NH group solvent accessibility and nuclear Overhauser effects suggest an appreciable solvent dependence of conformations. In chloroform a 3(10)-helical structure is favored, while in dimethylsulfoxide an Aib-Pro beta-turn with extended arms on either side is suggested. In the crystal, the backbone forms a somewhat distorted 3(10)-helix despite the presence of a Pro residue in the middle. Among the four possible intrahelical hydrogen bonds three are of the 4----1 type and one 5----1. Head-to-tail NH...O = C hydrogen bonds link the helical molecules into continuous columns. The space group is P2(1)2(1)2(1) a = 11.320(2), b = 19.889(3), and c = 21.247(3) A.  相似文献   

7.
Several chemically modified analogues to a tightly binding ligand for the second PDZ domain of MAGI-3 were synthesized and evaluated for their ability to compete with native peptide ligands. N-methyl scanning of the ligand backbone amides revealed the energetically important hydrogen bonds between the ligand backbone and the PDZ domain. Analogues to the ligand's conserved threonine/serine(-2) residue, involved in a side chain to side chain hydrogen bond with a conserved histidine in the PDZ domain, revealed that the interaction is highly sensitive to the steric structure around the hydroxyl group of this residue. Analogues of the ligand carboxy terminus revealed that the full hydrogen bond network of the GLGF loop is important in ligand binding.  相似文献   

8.
Molecular dynamics simulations of bee venom apamin, and an analogue having an Asn to Ala substitution at residue 2 (apamin-N2A), were analyzed to explore the contribution of hydrogen bonds involving Asn2 to local (beta-turn residues N2, C3, K4, A5) and global stability. The wild-type peptide retained a stable conformation during 2.4 ns of simulation at 67 degrees C, with high beta-turn stability characterized by backbone-side chain hydrogen bonds involving beta-turn residues K4 and A5, with the N2 side chain amide carbonyl. The loss of stabilizing interactions involving the N2 side chain resulted in the loss of the beta-turn conformation in the apamin N2A simulations (27 or 67 degrees C). This loss of beta-turn stability propagates throughout the peptide structure, with destabilization of the C-terminal helix connected to the N-terminal region by two disulfide bonds. Backbone stability in a synthetic peptide analogue (apamin-N2A) was characterized by NMR and amide hydrogen exchange measurements. Consistent with the simulations, loss of hydrogen bonds involving the N2 side chain resulted in destabilization of both the N-terminal beta-turn and the C-terminal helix. Amide exchange protection factors in the C-terminal helix were reduced by 9-11-fold in apamin N2A as compared with apamin, corresponding to free energy (deltaDeltaG(uf)) of around 1.5 kcal M(-1) at 20 degrees C. This is equivalent to the contribution of hydrogen bond interactions involving the N2 side chain to the stability of the beta-turn. Together with additional measures of exchange protection factors, the three main contributions to backbone stability in apamin that account for virtually the full thermodynamic stability of the peptide have been quantitated.  相似文献   

9.
The capping box, a recurrent hydrogen bonded motif at the N-termini of alpha-helices, caps 2 of the initial 4 backbone amide hydrogen donors of the helix (Harper ET, Rose GD, 1993, Biochemistry 32:7605-7609). In detail, the side chain of the first helical residue forms a hydrogen bond with the backbone of the fourth helical residue and, reciprocally, the side chain of the fourth residue forms a hydrogen bond with the backbone of the first residue. We now enlarge the earlier definition of this motif to include an accompanying hydrophobic interaction between residues that bracket the capping box sequence on either side. The expanded box motif--in which 2 hydrogen bonds and a hydrophobic interaction are localized within 6 consecutive residues--resembles a glycine-based capping motif found at helix C-termini (Aurora R, Srinivasan R, Rose GD, 1994, Science 264:1126-1130).  相似文献   

10.
The synthesis and the solution behavior of the linear peptides containing a beta-homo (beta-H) leucine residue-Boc-Leu-beta-HLeu-Leu-OMe, Boc-beta-HLeu-Leu-beta-HLeu-Leu-OMe, and Boc-Leu-beta-HLeu-Leu-beta-HLeu-Leu-OMe-as well as the solid structure of the tripeptide, are reported. The conformational behavior of the peptides was investigated in solution by two-dimensional nmr. Our data support the existence in solution with different families of conformers in rapid interchange. The crystals of the tripeptide are orthorhombic, space group P2(1)2(1)2, with a = 15.829(1) A, b = 29.659(1) A, c = 6.563(1) A, and Z = 4. The structure has been solved by direct methods and refined to final R1 and wR2 indexes of 0.0530 and 0.1436 for 2420 reflections with I > 2sigma(I). In the solid state, the tripeptide does not present intramolecular H bonds, and the peptide backbone of the two leucine residues adopts a quasi-extended conformation. For the beta-HLeu residue, the backbone conformation is specified by the torsion angles straight phi(2) = -120.9(4) degrees, mu(2) = 56.7(4) degrees, psi(3) = -133.2(4) degrees. The side chains of the three residues assume the same conformation (g(-), g(-), trans), and all peptide bonds, except the urethane group at the N-terminus, are in the trans conformation. Preliminary conformational energy calculations carried out on the Ac-NH-beta-HAla-NHMe underline that the conformations with mu angle equal to 180 degrees and 60 degrees assume lower energy with respect to the others. In addition, we found a larger conformational freedom for the psi angle with respect to the straight phi angle.  相似文献   

11.
Sample peptides Boc-Leu4-Aib-Leu4-OBzl and Boc-(Leu4-Aib)2-OBzl, were crystallized by the solvent-evaporation method. Both crystals are monoclinic, with space group of P2(1) and Z = 2. The cell parameters are a = 16.580 (7), b = 21.105 (7), c = 11.583 (4) A, and beta = 104.90 (3) degrees (Boc-Leu4-Aib-Leu4-OBzl), and a = 15.247 (9), b = 19.04 (1), c = 16.311 (9) A, and beta = 117.10 (1) degrees [Boc-(Leu4-Aib)2-OBzl]. Crystal structures were solved by the direct method and refined to R values of 0.096 (the former peptide) and 0.112 (the latter). Peptide backbones fold into a right-handed alpha-helix, except for the C-terminal Aib residue in Boc-(Leu4-Aib)2-OBzl. Both peptide molecules are stabilized by six (the former) or seven (the latter) intramolecular (5----1) hydrogen bonds, and arranged in the head-to-tail fashion, which makes an infinite column. In this column, one (the former) or two (the latter) intermolecular hydrogen bonds link the neighboring molecules. In the case of Boc-Leu4-Aib-Leu4-OBzl, the solvent molecule N,N-dimethylformamide was found in the difference Fourier map. There was a hydrogen bond between peptide and solvent molecule. Along the lateral direction, only hydrophobic contacts were observed between adjacent peptide molecules.  相似文献   

12.
Vijayakumar M  Qian H  Zhou HX 《Proteins》1999,34(4):497-507
A survey of 322 proteins showed that the short polar (SP) side chains of four residues, Thr, Ser, Asp, and Asn, have a very strong tendency to form hydrogen bonds with neighboring backbone amides. Specifically, 32% of Thr, 29% of Ser, 26% of Asp, and 19% of Asn engage in such hydrogen bonds. When an SP residue caps the N terminal of a helix, the contribution to helix stability by a hydrogen bond with the amide of the N3 or N2 residue is well established. When an SP residue is in the middle of a helix, the side chain is unlikely to form hydrogen bonds with neighboring backbone amides for steric and geometric reasons. In essence the SP side chain competes with the backbone carbonyl for the same hydrogen-bonding partner (i.e., the backbone amide) and thus SP residues tend to break backbone carbonyl-amide hydrogen bonds. The proposition that this is the origin for the low propensities of SP residues in the middle of alpha helices (relative to those of nonpolar residues) was tested. The combined effects of restricting side-chain rotamer conformations (documented by Creamer and Rose, Proc Acad Sci USA, 1992;89:5937-5941; Proteins, 1994;19:85-97) and excluding side- chain to backbone hydrogen bonds by the helix were quantitatively analyzed. These were found to correlate strongly with four experimentally determined scales of helix-forming propensities. The correlation coefficients ranged from 0.72 to 0.87, which are comparable to those found for nonpolar residues (for which only the loss of side-chain conformational entropy needs to be considered).  相似文献   

13.
X-ray crystallography has been used to determine the 3D structures of two complexes between Streptomyces griseus proteinase B (SGPB), a bacterial serine proteinase, and backbone variants of turkey ovomucoid third domain (OMTKY3). The natural P1 residue (Leu18I) has been substituted by a proline residue (OMTKY3-Pro18I) and in the second variant, the peptide bond between Thr17I and Leu18I was replaced by an ester bond (OMTKY3-psi[COO]-Leu18I). Both variants lack the P1 NH group that donates a bifurcated hydrogen bond to the carbonyl O of Ser214 and O(gamma) of the catalytic Ser195, one of the common interactions between serine proteinases and their canonical inhibitors. The SGPB:OMTKY3-Pro18I complex has many structural differences in the vicinity of the S1 pocket when compared with the previously determined structure of SGPB:OMTKY3-Leu18I. The result is a huge difference in the DeltaG degrees of binding (8.3 kcal/mol), only part of which can be attributed to the missing hydrogen bond. In contrast, very little structural difference exists between the complexes of SGPB:OMTKY3-psi[COO]-Leu18I and SGPB:OMTKY3-Leu18I, aside from an ester O replacing the P1 NH group. Therefore, the difference in DeltaG degrees, 1.5 kcal/mol as calculated from the measured equilibrium association constants, can be attributed to the contribution of the P1 NH hydrogen bond toward binding. A crystal structure of OMTKY3 having a reduced peptide bond between P1 Leu18I and P'1 Asp19I, (OMTKY3-psi[CH2NH2+]-Asp19I) has also been determined by X-ray crystallography. This variant has very weak association equilibrium constants with SGPB and with chymotrypsin. The structure of the free inhibitor suggests that the reduced peptide bond has not introduced any major structural changes in the inhibitor. Therefore, its poor ability to inhibit serine proteinases is likely due to the disruptions of the canonical interactions at the oxyanion hole.  相似文献   

14.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   

15.
An 1H-nmr study of 2-acetamido-2-deoxy-3,4,6-tri-O-acetyl-D-galactopyranose (AcGalNAc) glycosylated Thr-containing tripeptides in Me2SO-d6 solution reveals two mutually exclusive intramolecular hydrogen bonds. In Z-Thr(AcGalNAc)-Ala-Ala-OMe, there is an intramolecular hydrogen bond between the Thr amide proton and the sugar N-acetyl carbonyl oxygen. The strength of this hydrogen bond will be dependent on the amino acid residues on the Thr C terminal side to some undetermined distance. In Ac-Thr(AcGalNAc)-Ala-Ala-OMe, a different intramolecular hydrogen bond between the sugar N-acetyl amide proton and the Thr carbonyl oxygen exists. The choice of hydrogen bonds seems dependent on the bulkiness of the residues on the Thr N terminal side. The consequence of such strong hydrogen bonds is a clearly defined orientation of the sugar moiety with respect to the peptide backbone. In the former, the plane of the sugar pyranose ring is roughly oriented perpendicularly to the peptide backbone. The latter orientation is where the plane of the sugar ring is roughly in line with the peptide backbone. In both orientations, the sugar moiety can increase the shielding of the neighboring amino acid residues from the solvent. The idea that the amino acid residues near the glycosylated Thr influence orientation of the sugar moiety with respect to the peptide backbone and in turn possibly hinder peptide backbone flexibility has interesting implications in the conformational as well as the biological role of O-glycoproteins.  相似文献   

16.
Villin headpiece (HP67) is a small, autonomously-folding domain that has become a model system for understanding the fundamental tenets governing protein folding. In this communication, we explore the role that Leu61 plays in the structure and stability of the construct. Deletion of Leu61 results in a completely unfolded protein that cannot be expressed in Escherichia coli. Omission of only the aliphatic leucine side chain (HP67 L61G) perturbed neither the backbone conformation nor the orientation of local hydrophobic side chains. As a result, a large, solvent-exposed hydrophobic pocket, a negative replica of the leucine side-chain, was created on the surface. The loss of the hydrophobic interface between leucine 61 and the hydrophobic pocket destabilized the construct by ~3.3 kcal/mol. Insertion of a single glycine residue immediately before Leu61 (HP67 L61[GL]) was also highly destabilizing and had the effect of altering the backbone conformation (α-helix to π-helix) in order to precisely preserve the wild-type position and conformation of all hydrophobic residues, including Leu61. In addition to demonstrating that the hydrophobic side-chain of Leu61 is critically important for the stability of villin headpiece, our results are consistent with the notion that the precise interactions present within the hydrophobic core, rather than the hydrogen bonds that define the secondary structure, specify a protein's fold.  相似文献   

17.
HCO-Met-Leu-Ain-OMe (2), an analog of the chemotactic peptide HCO-Met-Leu-Phe-OH, containing the conformationally blocked residue of the 2-aminoindane-2-carboxylic acid (Ain) has been synthesized and its crystal and molecular conformation has been determined. Crystals of 2 are monoclinic, space group P2(1), with a = 15.059(7), b = 18.548(7), c = 9.600(4) A; beta = 85.04(3) degrees. The structure has been solved by direct methods and refined to R = 0.069 for 2813 independent reflections with I greater than 2.5 sigma (I). Two independent molecules A and B have been found in the asymmetric unit of the crystal of 2. Their conformation can be described as extended at the Met and Leu residues, but folded at the C-terminal Ain residue. The helical folding is left- and right-handed in the A and B molecule, respectively. The crystal packing is characterized by ribbons of intermolecular hydrogen bonded molecules extended along the c direction. The constrained analog 2 is highly active in the superoxide production, thus indicating that a stabilization of a helical folding at the C-terminal region of chemotactic tripeptides maintains the activity. The orientation of the aromatic ring, with respect to its adjacent backbone atoms, does not seem critical for the activity.  相似文献   

18.
Crystals of L-leucylglycylglycylglycine, LGGG (C12H22N4O5), grown from an ethanol-water solution, are orthorhombic, space groups P2(1)2(1)2(1), with unit cell dimensions (at 22 +/- 3 degrees) a = 9.337(1), b = 10.995(1), c = 15.235(1)A, v = 1563.4 A3, Z = 4 with a density of Dobs = 1.29 g.cm-3 and Dcalc = 1.279 g.cm-3. The crystal structure was solved by the application of direct methods and refined to an R value of 0.029 for 1018 reflections with I greater than or equal to 2 sigma. The molecule exists as a zwitterion in the crystal. The trans peptide backbone takes up a folded conformation at the middle glycylglycyl link accompanied by a significant nonplanarity up to delta omega of 8 degrees at the middle peptide and is relatively more extended at the two ends. The molecules are linked together intermolecularly in an infinite sequence of head to tail 1-4' hydrogen bonds, as is typical of charged peptides. It is interesting to note that while glycylglycylglycine takes up an extended beta-sheet conformation, addition of Leu to the N-terminal results in a bent conformation.  相似文献   

19.
The structure of the influenza-virus-matrix-protein (IMP) 58-66 nonapeptide, bound to the major-histocompatibility-complex-encoded human leukocyte antigen (HLA) A2 protein was studied by molecular dynamics simulation. Starting from the extra electron density map of peptides co-crystallized with HLA-A2, the nonapeptide IMP58-66 was docked residue by residue in the protein binding cleft. The complex was simulated for 100 ps in a shell of 1372 water molecules. The averaged simulated HLA-A2 conformation was found to be similar to the crystal structure (0.182 nm RMS deviation, for the backbone atoms of the alpha 1-alpha 2 domain). Nine out of the 14 hydrogen bonds observed in the antigen-binding site were reproduced in the simulation. The IMP58-66 peptide exhibits an extended conformation with kinks at positions 3 and 5. The side chains of residues 2, 3 and 9 develop van der Waals' interactions with hydrophobic pockets of HLA-A2, corresponding to polymorphic residues of the major-histocompatibility-complex-encoded proteins. Both the N-terminus and C-terminus of the nonapeptide were anchored in the antigen-binding groove by hydrogen bonds with conserved amino acids. The N-terminus was more flexible and contacts four HLA-A2 conserved tyrosines (Tyr7, Tyr59, Tyr159 and Tyr171) and Glu63 by direct or water-relayed hydrogen bonds. Water intercalation occurred only around the N-terminus of the peptide, the C-terminal carboxylate forming strong hydrogen bonds with polar residues (Tyr84 and Thr143) and a salt bridge with Lys146 all over the molecular dynamics simulation. This model is fully compatible with the recently published crystal structure of the HLA-B27 protein, complexed by a mixture of self nonapeptides.  相似文献   

20.
The effect of insertion of lactic acid (Lac) residues into peptide helices has been probed using specifically designed sequences. The crystal structures of 11-residue and 14-residue depsipeptides Boc-Val-Val-Ala-Leu-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (1) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe (3), containing centrally positioned Lac residues, have been determined. The structure of an 11-residue peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (2), analog of a which is an amide previously determined Lac-containing depsipeptide, Boc-Val-Ala-Leu-Aib-Val-Lac-Leu-Aib-Val-Ala-Leu-OMe I. L. Karle, C. Das, and P. Balaram, Biopolymers, Vol. 59, (2001) pp. 276-289], is also reported. Peptide 1 adopts a helical fold, which is stabilized by mixture of 4-->1 and 5-->1 hydrogen bonds. Peptide 2 adopts a completely alpha-helical conformation stabilized by eight successive 5-->1 hydrogen bonds. Peptide 3 appears to be predominately alpha-helical, with seven 5-->1 hydrogen bonds and three 4-->1 interaction interspersed in the sequence. In the structure of peptide 3 in addition to water molecules in the head-to-tail region, hydration at an internal segment of the helix is also observed. A comparison of five related peptide helices, containing a single Lac residue, reveals that the hydroxy acid can be comfortably accommodated at interior positions in the helix, with the closest C=O...O distances lying between 2.8 and 3.3 A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号