首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A stem cell is defined as a cell with the capacity to both self-renew and generate multiple differentiated progeny. Embryonic stem cells (ESC) are derived from the blastocyst of the early embryo and are pluripotent in differentiative ability. Their vast differentiative potential has made them the focus of much research centered on deducing how to coax them to generate clinically useful cell types. The successful derivation of hematopoietic stem cells (HSC) from mouse ESC has recently been accomplished and can be visualized in this video protocol. HSC, arguably the most clinically exploited cell population, are used to treat a myriad of hematopoietic malignancies and disorders. However, many patients that might benefit from HSC therapy lack access to suitable donors. ESC could provide an alternative source of HSC for these patients. The following protocol establishes a baseline from which ESC-HSC can be studied and inform efforts to isolate HSC from human ESC. In this protocol, ESC are differentiated as embryoid bodies (EBs) for 6 days in commercially available serum pre-screened for optimal hematopoietic differentiation. EBs are then dissociated and infected with retroviral HoxB4. Infected EB-derived cells are plated on OP9 stroma, a bone marrow stromal cell line derived from the calvaria of M-CSF-/- mice, and co-cultured in the presence of hematopoiesis promoting cytokines for ten days. During this co-culture, the infected cells expand greatly, resulting in the generation a heterogeneous pool of 100 s of millions of cells. These cells can then be used to rescue and reconstitute lethally irradiated mice.  相似文献   

3.
Nine antigens found on murine bone marrow cells were examined to define their pattern of expression in murine hematopoietic differentiation. Lymphocyte function antigen (LFA-1), heat stable antigen (recognized by M1/69), common leukocyte antigen (CLA, T200, Ly-5) and Lgp100a (recognized by 30-C7) were present on early hematopoietic progenitors, BFU-E, CFU-E, CFU-GM, and CFU-M. All antigens found on progenitors were found on some immature precursor cells, myeloblasts, erythroblasts, or monoblasts, but their pattern of expression on identifiable hematopoietic cells varied. Three of these antigens, LFA-1, heat stable antigen recognized by M1/69, and CLA, were expressed on leukocytes of all stages of maturity but were lost from the erythroid lineage during differentiation. MAC-1, Forssman antigen, heat stable antigen (recognized by M1/75), anti-P-95 (recognized by M5/113), and Ia (recognized by M5/114) were found only on differentiated hematopoietic precursors or mature cells. The expression of these antigens was more lineage-specific. MAC-1 and heat stable antigen (recognized by M1/75) were restricted to either mature myeloid or erythroid cells, respectively. The marked differences in distribution of these antigens suggest that they may be useful in negative or positive selection experiments to enrich progenitors, and that some of them may have a functional role in differentiation.  相似文献   

4.
The term mesenchymal stem cell (MSCs) was adopted in the 1990s to describe a population of bone-marrow-derived cells that demonstrated the capacity for tri-lineage differentiation at a clonal level. Research conducted during the ensuing decades has demonstrated that MSCs fulfill many functions in addition to connective tissue progenitors including contributing to the HSC niche and regulating the function of immune effector cells of both the innate and adaptive immune system. Despite these advances, fundamental aspects of MSC biology remain indeterminate. For example, the embryonic origin of MSCs and their niche in vivo remains a highly debated topic. More importantly, the mechanisms that regulate self-renewal and lineage specification have also been largely unexplored. The later is significant in that MSC population's exhibit considerable donor-to-donor and intra-population heterogeneity but knowledge regarding how different functional attributes of MSCs are specified at the population level is unknown. This poses significant obstacles in research and in efforts to develop clinical manufacturing protocols that reproducibly generate functionally equivalent MSC populations. Herein, I discuss data demonstrating that MSC populations are intrinsically heterogeneous, elaborate on the molecular basis for this heterogeneity, and discuss how heterogeneity impacts clinical manufacturing and the therapeutic potency of MSCs.  相似文献   

5.
Hematopoietic stem cells (HSCs) give rise to all lineages of blood cells. Because HSCs must persist for a lifetime, the balance between their proliferation and quiescence is carefully regulated to ensure blood homeostasis while limiting cellular damage. Cell cycle regulation therefore plays a critical role in controlling HSC function during both fetal life and in the adult. The cell cycle activity of HSCs is carefully modulated by a complex interplay between cell-intrinsic mechanisms and cell-extrinsic factors produced by the microenvironment. This fine-tuned regulatory network may become altered with age, leading to aberrant HSC cell cycle regulation, degraded HSC function, and hematological malignancy.  相似文献   

6.
The molecular mechanisms underlying hematopoietic stem cell (HSC) aging remain to be elucidated. In this study, we investigated age-related changes in the functional and phenotypic properties of murine HSCs. Consistent with previous studies, we found that the number and frequency of CD34−/lowc-Kit+Sca-1+lineage marker (CD34KSL) cells, a highly enriched HSC population, significantly increased in old mice, though their repopulating ability was reduced. Continuous bromodeoxyuridine labeling revealed a significant delay in the cell cycle progression of CD34KSL cells in old mice. This delay was also observed in young recipients transplanted with whole bone marrow cells from old mice. When cultured in vitro, CD34KSL cells from old mice showed a greater capacity to give rise to primitive CD48KSL cells with reduced HSC activity. Gene expression profiling identified age-related changes in the expression of several cell cycle regulatory genes, including p21/Cdkn1a and p18/Cdkn2c. These results support the notion that HSC aging is largely regulated by an intrinsic genetic program.  相似文献   

7.
8.
Limiting factors in murine hematopoietic stem cell assays   总被引:2,自引:0,他引:2  
Hematopoiesis arguably provides the most well-defined role of stem cells in tissue development, maintenance, and repair, largely because of the experimental methods developed over decades of investigation. Assays of hematopoietic stem and progenitor cell potential were developed in the late 1950s-1960s with the first reports of in vivo transplantation into lethally irradiated recipients (Ford et al., 1956; McCulloch and Till, 1960) and clonal growth of hematopoietic bone marrow cells in vitro (Bradley and Metcalf, 1966). These two major assays have undergone substantial refinement but remain the foundation for defining hematopoietic stem cell biology. Here, we provide a brief overview of methods commonly used to analyze hematopoietic stem and progenitor cell content in mice, discuss the limitations of these assays, and provide an in-depth review of the limiting dilution assay (Szilvassy et al., 1990), the best single assay for quantitating HSC content.  相似文献   

9.
Stem cells surviving radiation injury may carry defects which contribute to long-term effects. The ratio of 125-iododeoxyuridine (IUdR) uptake into spleens of lethally irradiated recipient mice between day 3 and day 5 after cell transfusion revealed reduced proliferative ability (PF) of spleen seeding cells in parallel with reduced CFU-S content of donors throughout the study period of one year after 5 Gy gamma irradiation. Additional data aided in evaluating possible mechanisms of PF reduction. Within the range of the graft sizes used, PF was independent of the numbers of cells or CFU-S transfused. Radiation-induced increase in loss of label between days 3 and 5 and prolonged doubling time of proliferating cells indicated enhancement of cell maturation and increase in mitotic cycle time. Increased IUdR uptake per transfused CFU-S suggested extra divisions of transit cells due to insufficiency in the stem cell compartment. It is concluded that persisting defects in surviving stem cells interfere in a complex way with cell proliferation in the hemopoietic system.  相似文献   

10.
Mesenchymal stromal/stem cells (MSC) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSC) but are capable of differentiating into various cell types of mesenchymal origin, such as bone, fat and cartilage. In vitro and in vivo data suggest that MSC have low inherent immunogenicity, modulate/suppress immunologic responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biologic properties. MSC derived from BM are being evaluated for a wide range of clinical applications, including disorders as diverse as myocardial infarction and newly diagnosed diabetes mellitus type 1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft-versus-host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSC, combined with their intriguing immunomodulatory properties and their impressive record of safety in a wide variety of clinical trials, make these cells promising candidates for further investigation.  相似文献   

11.
BACKGROUND: Leukaemia cells differ from their normal counterparts in that their ability to properly regulate survival, proliferation, differentiation, and apoptosis is aberrant. Understanding the molecular mechanisms controlling cell proliferation and developing therapeutic strategies to correct nonfunctional regulatory mechanisms are emerging areas of medical research. Ceramide, a metabolite of membrane sphingomyelin hydrolysis, has recently emerged as a key regulator of cellular proliferation, differentiation, and apoptosis in leukaemia cells. METHODS: Leukaemia cell lines were treated with a biologically active analogue of ceramide, C(2)-ceramide. Cell cycle status was assessed flow cytometrically using propidium iodide. Induction of apoptosis was confirmed by annexin V staining of externalised phosphatidylserine and retinoblastoma activation was determined by Western blotting. RESULTS: C(2)-ceramide induced activation of retinoblastoma tumour suppressor protein, G(0)/G(1) cell cycle arrest, or apoptosis in leukaemia cell lines. In addition, these effects differed depending upon cell type, thus confirming the pleiotropic nature of the ceramide signalling pathway. Most cells studied responded to exogenous C(2)-ceramide by entering growth arrest, evidently resulting from activation of retinoblastoma protein, and by displaying some degree of apoptosis. CONCLUSIONS: Taken together, these findings suggest that signalling via ceramide has novel therapeutic applications for treatment of leukaemia.  相似文献   

12.
13.
14.
15.
Nucleophosmin (NPM) is a multifunctional protein frequently overexpressed in actively proliferating cells. Strong evidence indicates that NPM is required for embryonic development and genomic stability. Here we report that NPM enhances the proliferative potential of hematopoietic stem cells (HSCs) and increases their survival upon stress challenge. Both short term liquid culture and clonogenic progenitor cell assays show a selective expansion of NPM-overexpressing HSCs. Interestingly, HSCs infected with NPM retrovirus show significantly reduced commitment to myeloid differentiation compared with vector-transduced cells, and majority of the NPM-overexpressing cells remains primitive during a 5-day culture. Bone marrow transplantation experiments demonstrate that NPM promotes the self-renewal of long term repopulating HSCs while attenuated their commitment to myeloid differentiation. NPM overexpression induces rapid entry of HSCs into the cell cycle and suppresses the expression of several negative cell cycle regulators that are associated with G(1)-to-S transition. NPM knockdown elevates expression of these negative regulators and exacerbates stress-induced cell cycle arrest. Finally, overexpression of NPM promotes the survival and recovery of HSCs and progenitors after exposure to DNA damage, oxidative stress, and hematopoietic injury both in vivo and in vitro. DNA repair kinetics study suggests that NPM has a role in reducing the susceptibility of chromosomal DNA to damage rather than promoting DNA damage repair. Together, these results indicate that NPM plays an important role in hematopoiesis via mechanisms involving modulation of HSC/progenitor cell cycle progression and stress response.  相似文献   

16.
In most organ systems, regeneration is a coordinated effort that involves many stem cells, but little is known about whether and how individual stem cells compensate for the differentiation deficiencies of other stem cells. Functional compensation is critically important during disease progression and treatment. Here, we show how individual hematopoietic stem cell (HSC) clones heterogeneously compensate for the lymphopoietic deficiencies of other HSCs in a mouse. This compensation rescues the overall blood supply and influences blood cell types outside of the deficient lineages in distinct patterns. We find that highly differentiating HSC clones expand their cell numbers at specific differentiation stages to compensate for the deficiencies of other HSCs. Some of these clones continue to expand after transplantation into secondary recipients. In addition, lymphopoietic compensation involves gene expression changes in HSCs that are characterized by increased lymphoid priming, decreased myeloid priming, and HSC self‐renewal. Our data illustrate how HSC clones coordinate to maintain the overall blood supply. Exploiting the innate compensation capacity of stem cell networks may improve the prognosis and treatment of many diseases.  相似文献   

17.
《Cell Stem Cell》2023,30(7):987-1000.e8
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   

18.
19.
BACKGROUND: In vitro incubation of murine BM cells with IL-3, IL-6, IL-11 and SCF induces expansion of HPC but fails to preserve 'engraftability' in comparison with normal untreated marrow cells. We studied how culturing marrow cells for 48 and 72 h with a combination of the cytokines SCF and Flt3L influences cell expansion and engraftability. METHODS: Competitive repopulation of lethally irradiated C57BL/6 mice was used to examine engraftability of ex vivo cytokine-expanded Ptprc chimeric BM. A methylcellulose in vitro assay was used to determine the expansion of substitute progenitors. RESULTS: Both cytokine combinations successfully expanded progenitor populations when assayed in methylcellulose culture in vitro. After 72 h, the colony numbers of the expansion cultures increased 61% with IL-3, IL-6, IL-11 and SCF stimulation and 96% with SCF and Flt3L stimulation. Engraftment of competitively transplanted cells, cultured with IL-3, IL-6, IL-11 and SCF, consistently dropped to levels below 16%. However, 48 h culture with SCF and Flt3L resulted in 53.5+/-1.6% engraftment at 17 days and 64+/-3.7% engraftment at 19 weeks post-transplantation. Extending the cytokine exposure to 72 h resulted in 70+/-4.4% short-term engraftment at 17 days, and 64+/-2.4% engraftment at 19 weeks post-transplantation. DISCUSSION: The data demonstrate the ability of SCF and Flt3L cytokine-stimulated BM cells to maintain short- and long-term engraftability. We conclude that these cytokines play a crucial role in maintaining engraftment of hematopoietic progenitors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号