首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Persistent infection of C3H/St mice with certain strains of lymphocytic choriomeningitis virus (LCMV) causes a growth hormone (GH) deficiency syndrome (GHDS) manifested as growth retardation and hypoglycemia. Infected mice show high levels of viral replication in the GH-producing cells in the anterior pituitary leading to decreased synthesis of GH mRNA and protein despite the absence of detectable virus-induced cell structural damage. Virus clones isolated from the GHDS-negative LCMV WE strain can cause the disease, while others cannot. The genetic basis of this phenotypic difference is a nucleotide substitution resulting in a single amino acid difference in the viral glycoprotein. Reassortant studies indicate that the single amino acid substitution (Ser-153 to Phe) is sufficient to allow infection of the GH-producing cells and cause GHDS. These results show that a single change in the genome can affect viral pathogenicity by altering the tropism of the virus.  相似文献   

2.
Infection with virus variants exhibiting changes in the peptide sequences defining immunodominant determinants that abolish recognition by antiviral cytotoxic T cells (CTL) presents a considerable challenge to the antiviral T-cell immune system and may enable some viruses to persist in hosts. The potential importance of such variants with respect to mechanisms of viral persistence and disease pathogenesis was assessed by infecting adult mice with variants of lymphocytic choriomeningitis virus (LCMV) strain WE. These variants were selected in vivo or in vitro for resistance to lysis by CD8+ H-2b-restricted antiviral CTL. The majority of anti-LCMV CTL in infected H-2b mice recognize epitopes defined by residues 32 to 42 and 275 to 289 (epitopes 32-42 and 275-289) of the LCMV glycoprotein or 397 to 407 of the viral nucleoprotein. The 8.7 variant exhibits a change in the epitope 32-42 (Val-35-->Leu), and variant CL1.2 exhibits a change in the epitope 275-289 (Asn-280-->Asp) of the wild-type LCMV-WE. The double-mutated 8.7-B23 variant had the variation of 8.7 and an additional change located in the epitope 275-289 (Asn-280-->Ser). The 8.7 variant peptide with unchanged anchor positions bound efficiently to H-2Db and H-2Kb molecules but induced only a very weak CTL response. CTL epitope 275-289 of CL1.2 and 8.7-B23 altered at predicted anchor residues were unable to bind Db molecules and were also not recognized by antiviral CTL. Infection of C57BL/6 mice (H-2b) with the variants exhibiting mutations of one of the CTL epitopes, i.e., 8.7 or CL1.2, induced CTL responses specific for the unmutated epitopes comparable with those induced by infection with WE, and these responses were sufficient to eliminate virus from the host. In contrast, infection with the double-mutated variant 8.7-B23 induced CTL activity that was reduced by a factor of about 50-fold compared with wild-type LCMV. Consequently, high doses (10(7) PFU intravenously) of this virus were eliminated slowly and only by about day 100 after infection. 8.7-B23 failed to cause lethal lymphocytic choriomeningitis after intracerebral infection with a dose of > 10(4) PFU in C57BL/6 mice (but not in mice of nonselecting H-2d haplotype); with the other variants or wild-type LCMV, doses greater than 10(6) to 10(7) PFU were necessary to avoid lethal choriomeningitis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
CD4+ T cells play an important role in regulating the immune response; their contribution to virus clearance is variable. Mice that lack CD4+ T cells (CD4-/- mice) and are therefore unable to produce neutralizing antibodies cleared viscero-lymphotropic lymphocytic choriomeningitis virus (LCMV) strain WE when infected intravenously with a low dose (2 x 10(2) PFU) because of an effective CD8+ cytotoxic T-cell (CTL) response. In contrast, infection with a high dose (2 x 10(6) PFU) of LCMV strain WE led to expansion of antiviral CTL, which disappeared in CD4-/- mice; in contrast, CD4+ T-cell-competent mice developed antiviral memory CTL. This exhaustion of specific CTL caused viral persistence in CD4-/- mice, whereas CD4+ T-cell-competent mice eliminated the virus. After infection of CD4-/- mice with the faster-replicating LCMV strain DOCILE, abrogation of CTL response and establishment of viral persistence developed after infection with a low dose (5 x 10(2) PFU), i.e., an about 100-fold lower dose than in CD(4+)-competent control mice. These results show that absence of T help enhances establishment of an LCMV carrier state in selected situations.  相似文献   

4.
The Armstrong CA 1371 (ARM) and WE strains of lymphocytic choriomeningitis virus (LCMV) differ in the ability to produce disease in adult guinea pigs. Infection with the ARM strain is not lethal, even at high virus doses (greater than 10,000 PFU), whereas the WE strain causes 100% mortality even at low doses (less than 10 PFU). To determine the genetic basis of this virulence, intertypic reassortants were made between the ARM and WE strains of LCMV. The two reassortants with the genotypes WE/ARM (L segment of WE and S segment of ARM) and ARM/WE (L segment of ARM and S segment of WE) were tested for their pathogenicity in guinea pigs. The ARM/WE reassortant was avirulent like the ARM/ARM parental strain. Minimal viral replication was observed in organs of guinea pigs inoculated with 10(2) or 10(5) PFU of ARM/ARM or ARM/WE, and all animals survived. In contrast, the WE/ARM reassortant was highly virulent like the WE/WE parental strain and killed all of the infected animals. High levels of viral replication were observed in guinea pigs infected with the latter two strains. In contrast to these in vivo observations, both the parental strains and the ARM/WE or WE/ARM reassortants had similar growth potential in cultured guinea pig fibroblasts. Thus, the L RNA segment of LCMV WE is important for viral replication in vivo and is associated with fatal acute disease after infection of adult guinea pigs.  相似文献   

5.
The pituitary prolactin and growth hormone (GH) levels were determined by disc electrophoresis on 10% polyacrylamide gel during the virginal and pregnant stages and on Day 12 of lactation, using C3H/He and C57BL/6 mice. The former had been shown to be superior to the latter in both mammary development and lactational performance. The pituitary prolactin levels were significantly higher in C3H/He mice than in C57BL/6 mice during the virginal and pregnant stages. However, no strain differences existed in the prolactin levels on Day 12 of lactation. Little difference in the prolactin levels was found between estrus and diestrus, and the levels declined gradually with the advance of pregnancy in both strains. The levels decreased after 1 hr of suckling preceded by 8-hr removal of young on Day 12 of lactation in both strains, but the difference between before and after suckling was statistically significant only in C3H/He mice. Both pituitary GH content and concentration were significantly higher in C3H/He mice than in C57BL/6 mice during the virginal stage and the content was also higher in C3H/He mice during the pregnant stage. However, there existed no strain difference in the levels on Day 12 of lactation. Little change in the pituitary GH levels was observed during the different reproductive states in both strains.  相似文献   

6.
Viral variants with different biological properties are present in the central nervous systems (CNS) and lymphoid tissues of mice persistently infected with lymphocytic choriomeningitis virus (LCMV). Viral isolates from the CNS are similar to the original Armstrong LCMV strain and induce potent virus-specific T-cell responses in adult mice, and the infection is rapidly cleared. In contrast, LCMV isolates derived from spleens of carrier mice cause persistent infections in adult mice. This chronic infection is associated with low levels of antiviral T-cell responses. In this study, we genetically characterized two independently derived spleen variants by making recombinants (reassortants) between the spleen isolates and wild-type (wt) LCMV and showed that the ability to persist in adult mice and the associated suppression of T-cell responses segregates with the large (L) RNA segment. In addition, we analyzed a revertant (isolated from the CNS) derived from one of the spleen variants. By comparing the biological properties of three reassortants that contained the same S segment but had the L segment of either the original wt Armstrong LCMV, the spleen variant derived from it, or the CNS revertant derived from the spleen variant, we were able to show unequivocally that biologically relevant mutations occurred in the L segment not only during generation of the spleen variant from wt LCMV but also in reversion of the spleen variant to the wt phenotype. Thus, our results showed that (i) genetic alterations in the L genomic segment were involved in organ-specific selection of viral variants, and (ii) these mutations profoundly affected the ability of LCMV to cause chronic infections in adult mice.  相似文献   

7.
Lymphoid cells obtained from the C3H/HeJ mouse strain respond abnormally to LPS in vitro, as shown by the fact that they are unable to make a mitogenic response to some LPS preparations and make only a low mitogenic response to other LPS preparations. In contrast, cells from a closely related C3H substrain, the C3H/St, are highly responsive to both types of LPS preparations. Experiments were carried out to determine the cellular basis of these genetically determined LPS response differences. This question was approached by studying the mitogenic response to LPS in cultures containing mixtures of various combinations of B cells, T cells, and macrophages from C3H/HeJ and C3H/St mice. Experiments utilizing an LPS preparation to which the C3H/HeJ is totally unresponsive (negative LPS) revealed, first, that either spleen cells, or partially purified T cells and/or macrophages obtained from C3H/St, could not restore the ability of C3H/HeJ spleen cells to respond to LPS, indicating that the C3H/HeJ is not deficient in an LPS-specific helper cell population which may be required for mitogenesis. Secondly, the addition of either spleen cells or partially purified T cells or macrophages from the C3H/HeJ to spleen cells from the C3H/St did not inhibit the mitogenic response to LPS, suggesting that the presence of suppressor cell activity is also not involved. Experiments analogous to those described, except utilizing another LPS preparation to which the C3H/HeJ is partially responsive (positive LPS), also failed to demonstrate reconstitutive or suppressive effects when C3H/HeJ and C3H/St spleen cells were admixed. The results obtained indicate that the defect in the C3H/HeJ mouse strain that limits its responsiveness to positive LPS and which renders it totally unresponsive to negative LPS appears to be an intrinsic defect in the capacity of B cells to react to the mitogenic stimulus of LPS.  相似文献   

8.
Cytotoxic T lymphocytes (CTL) were induced in C57BL/6 and (C57BL/6 X DBA/2)F1 mice after immunization with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV-Arm) and were cloned by limiting dilution in vitro. The cytotoxic activity of these clones was LCMV specific and H-2 restricted. All clones induced in C57BL/6 (H-2b) mice with LCMV-Arm lysed target cells infected with each of five distinct strains of LCMV (Arm, Traub , WE, Pasteur, and UBC ), suggesting recognition of common regions of viral proteins in association with H-2b molecules. In contrast, one clone obtained from (B6 X D2)F1 mice and restricted to the H-2d haplotype only lysed cells infected with one of three strains of virus (Arm, Traub , WE) but not two others (Pasteur, UBC ), suggesting recognition of variable regions of viral proteins in the context of H-2d molecules. To assess the fine specificity for H-2 molecules, we tested H-2Kb-restricted CTL clones for their ability to kill LCMV-infected target cells bearing mutations in their H-2Kb, and we tested clones presumed to be restricted to the H-2Db region for their ability to all LCMV targets cells bearing a mutation in the H-2Db region. Several different patterns of killing of the mutant targets were observed, indicating that a number of different epitopes on the H-2b molecules were used as restricting determinants for LCMV antigen recognition by CTL. Thus, cross-reactive viral determinants were recognized in the context of several different restricting determinants. Mutations in the N or C1 domains of the H-2 molecule affected recognition by a single LCMV specific CTL clone. One implication of this result is that CTL recognize a conformational determinant on the H-2 molecule formed by the association of virus antigen(s) with H-2. An alternate explanation is that one site on the H-2 molecule is involved in the interaction of viral antigens with H-2, whereas another may serve as a binding site for the CTL receptor.  相似文献   

9.
Alloreactive cytotoxic T lymphocytes (CTL) distinct from virus-specific CTL and activated natural killer (NK) cells were generated during acute lymphocytic choriomeningitis virus (LCMV) infection of C57BL/6J mice. The alloreactive CTL shared similar antigenic markers (Thy-1.2+, Lyt-2.2+, and asialo GM1-) with the virus-specific CTL that appeared at the same time 7 days postinfection, but had different target specificities. These alloreactive CTL lysed allogeneic but not syngeneic or xenogeneic targets. These were distinct from activated NK cells, which lysed all target cell types, peaked 3 days postinfection, and had a phenotype of asialo GM1+, Thy-1 +/-, Lyt-2.2-. Cold target competition studies indicated that there were several subsets of alloreactive T cells with distinct specificities, and that these alloreactive T cells were not subsets of the virus-specific T cells. Similar types of alloreactive CTL were induced at much lower levels in C3H/St mice. This may indicate that the generation of this "aberrant" T cell activity is under genetic control. Hence, the LCMV infection of C57BL/6J mice induces several cytotoxic effector populations including alloreactive CTL, activated NK cells, and virus-specific CTL. Virus infections therefore have the ability not only to polyclonally stimulate B cells, as previously described, but also to stimulate CTL.  相似文献   

10.
Lymphocytic choriomeningitis virus (LCMV), the prototype arenavirus, and Lassa virus (LASV), the causative agent of Lassa fever (LF), have extensive strain diversity and significant variations in pathogenicity for humans and experimental animals. The WE strain of LCMV (LCMV-WE), but not the Armstrong (Arm) strain, induces a fatal LF-like disease in rhesus macaques. We also demonstrated that LASV infection of human macrophages and endothelial cells resulted in reduced levels of proinflammatory cytokines. Here we have shown that cells infected with LASV or with LCMV-WE suppressed Toll-like receptor 2 (TLR2)-dependent proinflammatory cytokine responses. The persisting isolate LCMV clone 13 (CL13) also failed to stimulate interleukin-6 (IL-6) in macrophages. In contrast, nonpathogenic Mopeia virus, which is a genetic relative of LASV and LCMV-Arm induced robust responses that were TLR2/Mal dependent, required virus replication, and were enhanced by CD14. Superinfection experiments demonstrated that the WE strain of LCMV inhibited the Arm-mediated IL-8 response during the early stage of infection. In cells transfected with the NF-κB-luciferase reporter, infection with LCMV-Arm resulted in the induction of NF-κB, but cells infected with LCMV-WE and CL13 did not. These results suggest that pathogenic arenaviruses suppress NF-κB-mediated proinflammatory cytokine responses in infected cells.  相似文献   

11.
12.
Lymphocytic choriomeningitis virus (LCMV) is a zoonotic pathogen of which mice are the natural reservoir. Different strains and clones of LCMV show different pathogenicity in mice. Here we determined the complete genomic sequences of 3 LCMV strains (OQ28 and BRC which were isolated from mice in Japan and WE(ngs) which was derived from strain WE). Strains OQ28 and BRC showed high sequence homology with other LCMV strains. Although phylogenetic analyses placed these 2 Japanese strains in different subclusters, they belonged to same cluster of LCMV isolates. WE(ngs) and WE had many sequence substitutions between them but fell into same subcluster. The pathogenicity of the 3 new LCMV isolates was examined by inoculating ICR mice with 102 and 104 TCID50 of virus. ICR mice infected with OQ28 or WE(ngs) exhibited severe clinical signs, and some of the infected mice died. In contrast, all ICR mice infected with BRC showed no clinical signs and survived infection. Virus was detected in the blood, organs, or both of most of the surviving ICR mice inoculated with either OQ28 or WE(ngs). However, virus was below the level of detection in all ICR mice surviving infection with strain BRC. Therefore, LCMV strains OQ28 and BRC were genetically classified in the same cluster of LCMV strains but exhibited very different pathogenicity.Abbreviations: dpi, days postinfection; GP, viral glycoprotein; h, hydrophobic region; IFA, indirect fluorescent antibody assay; L, viral RNA-dependent RNA polymerase; LCMV, lymphocytic choriomeningitis virus; NP, nucleocapsid protein; UTR, untranslated region; Z, zinc-finger proteinLymphocytic choriomeningitis virus (LCMV) is a member of the genus Arenavirus in the family Arenaviridae. The genus Arenavirus is divided into 2 groups (Old World and New World arenaviruses) according to genetic and antigenic characteristics.4 LCMV is a member of the Old World arenavirus group, which also includes Lassa, Mopeia, Mobala, and Ippy viruses.4,10 The LCMV genome contains 2 negative-sense single-stranded RNA segments, designated S RNA and L RNA, with approximate sizes of 3.4 kb and 7.2 kb, respectively.30,31 Each RNA segment has an ambisense coding strategy, encoding 2 different proteins in opposite orientations. S RNA encodes the nucleocapsid protein and glycoprotein, and L RNA encodes the viral RNA-dependent RNA polymerase and a small zinc finger protein.25,30LCMV is a zoonotic agent that is transmitted to humans via urine or saliva of infected mice (Mus musculus), which are a natural reservoir of the virus.4 The prevalence of LCMV in mice is 7.0% to 25.9% in Japan and 4% to 9% in Europe.5,17,19,20,35 Mice are naturally infected by either vertical or horizontal transmission of the virus, and infected mice usually show no clinical signs. In contrast, experimentally infected mice inoculated intraperitoneally or intracerebrally can exhibit clinical signs such as ruffled fur, half-closed eyes, hunched posture, immobility, and neurologic deficits.4,12,19 Although human LCMV infections are generally either asymptomatic or mild, immunodeficient persons can develop spontaneous abortion, severe birth defects, aseptic meningitis, or fatal infections.1,2,13,22,27 Therefore, LCMV is an important agent that should be monitored in facilities housing and breeding mice.LCMV strains Armstrong, Traub, and WE were isolated during the 1930s from laboratory mice and humans working in a mouse facility.4 Many other LCMV strains and clones used in research originated from these 3 isolates. Strains Aggressive and Docile are clones (variants) of strain UBC, which was derived from the parental strain WE, and strains E350, CA1371, 53b, and clone 13 were all derived from strain Armstrong.4 The lethality of strains Aggressive and Docile varies between mouse strains.38 Mice inoculated with 53b develop acute infections, whereas those inoculated with clone 13 mount chronic infections, even though both of the strains were derived from strain Armstrong.29 Furthermore, strain Armstrong produces more severe disease in C3H mice than do strains WE and Traub.4 Therefore, previous studies indicate that mice infected with different strains of LCMV exhibit differences in clinical signs and lethality.4,7 LCMV is a noncytolytic virus and causes immune-mediated viral disease.12 The clinical signs and lethal disease arise because virus-specific T cells attack infected cells on critical organs in infected mice.12Here we report the characterization of 2 LCMV strains recently isolated in Japan (strains OQ28 and BRC) and a passaged isolate of strain WE. The complete genomic sequences of these 3 strains were determined, and their phylogenetic relationship to other LCMV strains was assessed. We also evaluated the pathogenicity in ICR mice of these isolates.  相似文献   

13.
Mounting effective innate and adaptive immune responses are critical for viral clearance and the generation of long lasting immunity. It is known that production of inhibitory factors may result in the inability of the host to clear viruses, resulting in chronic viral persistence. Fibrinogen-like protein 2 (FGL2) has been identified as a novel effector molecule of CD4+CD25+ Foxp3+ regulatory T (Treg) cells that inhibits immune activity by binding to FCγRIIB expressed primarily on antigen presenting cells (APC). In this study, we show that infection of mice with Lymphocytic Choriomeningitis Virus WE (LCMV WE) leads to increased plasma levels of FGL2, which were detected as early as 2 days post-infection (pi) and persisted until day 50 pi. Mice deficient in FGL2 (fgl2−/−) had increased viral titers of LCMV WE in the liver early p.i but cleared the virus by day 12 similar to wild type mice. Dendritic cells (DC) isolated from the spleens of LCMV WE infected fgl2−/− had increased expression of the DC maturation markers CD80 and MHC Class II compared to wild type (fgl2+/+). Frequencies of CD8+ and CD4+ T cells producing IFNγ in response to ex vivo peptide re-stimulation isolated from the spleen and lymph nodes were also increased in LCMV WE infected fgl2 −/− mice. Increased frequencies of CD8+ T cells specific for LCMV tetramers GP33 and NP396 were detected within the liver of fgl2−/− mice. Plasma from fgl2−/− mice contained higher titers of total and neutralizing anti-LCMV antibody. Enhanced anti-viral immunity in fgl2−/− mice was associated with increased levels of serum alanine transaminase (ALT), hepatic necrosis and inflammation following LCMV WE infection. These data demonstrate that targeting FGL2 leads to early increased viral replication but enhanced anti-viral adaptive T & B cell responses. Targeting FGL2 may enhance the efficacy of current anti-viral therapies for hepatotropic viruses.  相似文献   

14.
Peritoneal macrophages from the endotoxin-unresponsive C3H/HeJ substrain of mice were entirely refractory to activation in vitro by protein-free LPS, a defect that was not overcome by co-culture of spleen cells from the responder C3H/St substrain with LPS resistant C3H/HeJ macrophages. The defect in responsiveness appears confined to the lipid A activation signal since C3H/HeJ macrophages were fully activated after in vitro treatment by lipid A protein (LAP)--LPS complex, isolated LAP, and BCG. Moreover, after exposure to allogeneic tumor cells in vivo, C3H/HeJ macrophages were cytotoxic for tumor target cells in vitro. By contrast, macrophages from the responder C3H/St strain were fully activated by protein-free LPS to become cytolytic for tumor cells in vitro. C3H/HeJ macrophages, therefore, exhibit a highly selective defect characterized by unresponsiveness to the lipid A activation signal of protein-free LPS and resistance to the toxic effects of high concentrations of LPS that were lethal to the responder C3H/St strain.  相似文献   

15.
Recombinant vaccinia virus expressing the Lassa virus (LV) envelope glycoprotein precursor, V-LSGPC, was used to study the basis of LV-induced cross-protective immunity against the closely related arenavirus lymphocytic choriomeningitis virus (LCMV). C3H/HeJ mice primed with V-LSGPC developed neither circulating antibodies nor CD8+ cytotoxic T cells specific for LCMV, yet they resisted a normally lethal LCMV challenge. Spleen cells from such mice gave a proliferative response to LCMV in vitro that was inhibitable by anti-CD4 antibody. Synthetic peptides corresponding to predicted T-cell sites common to the envelope glycoprotein precursor (GP-C) of LV and that of LCMV were used to map the specificity of the proliferative response to an epitope located between amino acids 403 and 417 of LV GP-C. Several CD4+ T-cell clones specific for the 403-417 peptide were isolated and found to produce gamma interferon in response to both the peptide and LCMV. One of these clones, C9, was selected for further study. C9 lysed I-AK-bearing target cells, and when adoptively transferred to C3H/HeJ mice, it was capable of mediating both a peptide-specific delayed hypersensitivity reaction and resistance to lethal LCMV challenge. These collective findings demonstrate, for the first time, that CD4+ T cells can play a major role in arenavirus-specific cross-protective immunity.  相似文献   

16.
Functional analysis of T lymphocyte subsets in antiviral host defense   总被引:29,自引:0,他引:29  
The role of different T cell subsets in antiviral host defense was investigated by treating thymectomized C57BL/6 and CBA/J mice with monoclonal rat anti-Lyt-2 or anti-L3/T4 IgG 2b antibodies 14 and 10 days before infection. This treatment depleted the respective T cell subsets to undetectable levels in peripheral blood when assayed by immunofluorescence. In mice treated with anti-Lyt-2, induction of cytotoxic T cells was reduced to less than 1 to 2% after intravenous infection with Armstrong strain of lymphocytic choriomeningitis virus (LCMV). In addition, no primary swelling of the footpad could be detected following local inoculation of the virus. In animals treated with anti-L3/T4, antiviral cytotoxic T lymphocyte responses were reduced by a factor of 10. These L3/T4+ cell-depleted mice showed delayed footpad swelling after local injection of LCMV Armstrong. After intracerebral infection with LCMV, anti-Lyt-2-treated mice were resistant and those injected with anti-L3/T4 were totally susceptible to LCMV Armstrong-triggered immunopathologic disease. Virus could be detected in the blood of antibody-treated mice 7 days after inoculation; however, no virus could be measured in the blood of surviving anti-Lyt-2-treated animals 15 days after intracerebral infection. Serum titers of interferon-alpha,beta induced by viral infection remained unaffected by depletion of T cell subsets. Anti-L3/T4 antibody-treated C57BL/6 mice failed to generate IgG antibodies against the New Jersey strain of vesicular stomatitis virus, whereas Lyt-2+ cell-depleted mice had normal antivesicular stomatitis virus (New Jersey strain) IgG antibody titers.  相似文献   

17.

Background

The envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV) can efficiently pseudotype lentiviral vectors. Some strains of LCMV exploit high affinity interactions with α-dystroglycan (α-DG) to bind to cell surfaces and subsequently fuse in low pH endosomes. LCMV strains with low α-DG affinity utilize an unknown receptor and display unique tissue tropisms. We pseudotyped non-primate feline immunodeficiency virus (FIV) vectors using LCMV derived glycoproteins with high or low affinity to α-DG and evaluated their properties in vitro and in vivo.

Methods

We pseudotyped FIV with the LCMV WE54 strain envelope glycoprotein and also engineered a point mutation in the WE54 envelope glycoprotein (L260F) to diminish α-DG affinity and direct binding to alternate receptors. We hypothesized that this change would alter in vivo tissue tropism and enhance gene transfer to neonatal animals.

Results

In mice, hepatic α- and β-DG expression was greatest at the late gestational and neonatal time points. When displayed on the surface of the FIV lentivirus the WE54 L260F mutant glycoprotein bound weakly to immobilized α-DG. Additionally, LCMV WE54 pseudotyped FIV vector transduction was neutralized by pre-incubation with soluble α-DG, while the mutant glycoprotein pseudotyped vector was not. In vivo gene transfer in adult mice with either envelope yielded low transduction efficiencies in hepatocytes following intravenous delivery. In marked contrast, neonatal gene transfer with the LCMV envelopes, and notably with the FIV-L260F vector, conferred abundant liver and lower level cardiomyocyte transduction as detected by luciferase assays, bioluminescent imaging, and β-galactosidase staining.

Conclusions

These results suggest that a developmentally regulated receptor for LCMV is expressed abundantly in neonatal mice. LCMV pseudotyped vectors may have applications for neonatal gene transfer.

Abbreviations

Armstrong 53b (Arm53b); baculovirus Autographa californica GP64 (GP64); charge-coupled device (CCD); dystroglycan (DG); feline immunodeficiency virus (FIV); glycoprotein precursor (GP-C); firefly luciferase (Luc); lymphocytic choriomeningitis virus (LCMV); nuclear targeted β-galactosidase (ntLacZ); optical density (OD); PBS/0.1% (w/v) Tween-20 (PBST); relative light units (RLU); Rous sarcoma virus (RSV); transducing units per milliliter (TU/ml); vesicular stomatitis virus (VSV-G); wheat germ agglutinin (WGA); 50% reduction in binding (C50).  相似文献   

18.
The role of antibody in immune recovery from infection with lymphocytic choriomeningitis virus (LCMV) strain WE was evaluated in B-cell-depleted mice. Mice were treated from birth with either affinity-purified rabbit anti-mouse immunoglobulin M (IgM), normal rabbit immunoglobulin, or, alternatively, an affinity-purified monoclonal rat anti-mouse IgM antibody (LO-MM-9); untreated mice served as controls. B-cell depletion was considered complete in specifically treated mice according to the following criteria: absence of a significant response to the B-cell mitogen lipopolysaccharide, absence of B cells expressing immunoglobulin on their surfaces, absence of detectable IgM or IgG in serum, and presence in the serum of free anti-IgM antibodies. In organs of mu-suppressed BALB/c mice, LCMV-WE replicated, dependent upon organ, at the same rate or more rapidly and, in general, to higher titers than in normal rabbit immunoglobulin-treated mice; untreated mice eliminated the virus most rapidly and showed lower virus titers. In addition, LCMV-primed control mice cleared a second LCMV challenge very rapidly and contained no virus by day 3, whereas mu-suppressed mice had virus in their blood and organs (except the spleen) up to days 3 to 6. The observed effects of anti-mu treatment may reflect the action of neutralizing antibodies (which so far have been difficult to demonstrate in vivo) or other antibody-dependent antiviral mechanisms which, together with T cells, efficiently control LCMV clearance.  相似文献   

19.
An acutely lethal LCMV disease model has been established in the Syrian golden hamster (Mesocricetus auratus) in which lethality and disease are dependent upon both the inbred hamster strain and the LCMV strain. Young adult inbred, male and female, hamsters were tested for lethal-disease susceptibility by lymphocytic choriomeningitis virus (LCMV) strains, WE or Armstrong (ARM). With WE inocula, PD4 and MHA inbred hamsters were highly susceptible to a wasting disease. LVG and LHC inbred hamsters were intermediate in susceptibility; some of these animals died of wasting illness, and others exhibited minimal disease and survived. CB and LSH hamsters were highly resistant to any disease by WE. Mean survival times of susceptible hamsters given lethal WE inocula approximated 2.5 weeks and were not dependent on virus dose. By 1.5 weeks after WE inoculation wasting disease signs were notable and consisted of lethargy, progressive body weight loss, and diarrhea. The LCMV strain, ARM, was avirulent for all hamster strains, causing neither death nor disease. Hamsters surviving WE or ARM inoculation appeared healthy, produced LCMV antibody, and acquired resistance to further lethal WE challenge. Despite hamster-lethality differences. WE and ARM appeared comparably immunogenic for all hamster strains, based on host antibody titers. A number of other differences between the LCMV strains were, however, noted which could be relevant to virus virulence and lethality for hamster hosts. These included guinea pig lethality, temperature sensitivity, and plaque morphology.  相似文献   

20.
The susceptibility to alpha/beta interferon (IFN-alpha/beta) or to gamma interferon (IFN-gamma) of various lymphocytic choriomeningitis virus (LCMV) strains was evaluated in C57BL/6 mice and in various cell lines. Anti-IFN-gamma treatment in vivo revealed that the LCMV strains Armstrong, Aggressive, and WE were most susceptible to IFN-gamma whereas Traub, Cl 13-Armstrong, and Docile were resistant. The same pattern of susceptibility to recombinant IFN-gamma was observed in vitro. In vivo treatment with anti-IFN-alpha/beta showed a sizeable increase in replication of Aggressive, Armstrong, and WE; effects were less pronounced for Docile, Cl 13-Armstrong, or Traub. Correspondingly, WE, Armstrong, and Aggressive were all relatively sensitive to purified IFN-alpha/beta in vitro, and Cl 13-Armstrong, Docile, and Traub were more resistant. Overall, there was a good correlation between the capacity of LCMV strains to establish a persistent infection in adult immunocompetent mice and their relative resistance to IFN-gamma and IFN-alpha/beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号