首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Procarbazine is a cytotoxic chemotherapeutic agent used in the treatment of lymphomas and brain tumors. Its pharmacokinetic behavior remains poorly understood even though more than 30 years have elapsed since the drug was approved for clinical use. To characterize the pharmacokinetics of procarbazine in brain cancer patients during a phase I trial, a method for determining the drug in human plasma by reversed-phase high-performance liquid chromatography (HPLC) with electrospray ionization mass spectrometry (ESI-MS) was developed and thoroughly validated. Plasma samples were prepared for analysis by precipitating proteins with trichloroacetic acid and washing the protein-free supernatant with methyl tert-butyl ether to remove excess acid. The solution was separated on a Luna C-18 analytical column using methanol-25 mM ammonium acetate buffer, pH 5.1 (22:78, v/v) as the mobile phase at 1.0 ml/min. A single-quadrupole mass spectrometer with an electrospray interface was operated in the selected-ion monitoring mode to detect the [M+H](+) ions at m/z 222.2 for procarbazine and at m/z 192.1 for the internal standard (3-dimethylamino-2-methylpropiophenone). Procarbazine and the internal standard eluted as sharp, symmetrical peaks with retention times (mean+/-S.D.) of 6.3+/-0.1 and 9.9+/-0.3 min, respectively. Calibration curves of procarbazine hydrochloride in human plasma at concentrations ranging from 0.5 to 50 ng/ml exhibited excellent linearity. The mean absolute recovery of the drug from plasma was 102.9+/-1.0%. Using a sample volume of 150 microl, procarbazine was determined at the 0.5 ng/ml (1.9 nM) lower limit of quantitation with a mean accuracy of 105.2% and an interday precision of 3.60% R.S.D. on 11 different days over 5 weeks. During this same time interval, the between-day accuracy for determining quality control solutions of the drug in plasma at concentrations of 2.0, 15 and 40 ng/ml ranged from 97.5 to 98.2% (mean+/-S.D., 97.9+/-0.4%) and the precision was 3.8-6.2% (mean+/-S.D., 5.1+/-1.2%). Stability characteristics of the drug were thoroughly evaluated to establish appropriate conditions to process, store and prepare clinical specimens for chromatographic analysis without inducing significant chemical degradation. The sensitivity achieved with this assay permitted the plasma concentration-time profile of the parent drug to be accurately defined following oral administration of standard doses to brain cancer patients.  相似文献   

2.
Atractylenolide III is a major active component in Atractylodes macrocephala. This paper describes a simple, rapid, specific and sensitive method for the quantification of atractylenolide III in rat plasma using a liquid-liquid extraction procedure followed by liquid chromatography mass spectrometric (LC-MS) analysis. A Kromasil 3.5 microm C(18) column (150 mm x 2.00 mm) was used as the analytical column. Linear detection responses were obtained for atractylenolide III concentration ranging from 5 to 500 ng L(-1). The precision and accuracy data, based on intra-day and inter-day variations over 5 days were within 10.29%. The lower limit of quantitation for atractylenolide III was 5 ng mL(-1), using 0.1 mL plasma for extraction and its recoveries were greater than 85% at the low, medium and high concentrations. The method has been successfully applied to a pharmacokinetic study in rats after an oral administration of atractylenolide III with a dose of 20.0 mg kg(-1). With the lower limits of quantification at 5 ng mL(-1) for atractylenolide III, this method was proved to be sensitive enough for the pharmacokinetics study of atractylenolide III.  相似文献   

3.
A simple and sensitive HPLC/MS/MS method was developed and evaluated to determine the concentration of ritodrine (RTD) in human plasma. Liquid-liquid extraction with ethyl acetate was employed as the sample preparation method. The structural analogue salbutamol was selected as the internal standard (IS). The liquid chromatography was performed on a Hanbon Sci. & Tech. Lichrospher CN (150 mm x 4.6 mm, i.d., 5 microm) column (Hanbon, China) at 20 degrees C. A mixture of 0.03% acetic acid and methanol (50:50, v/v) was used as isocratic mobile phase to give the retention time 3.60 min for ritodrine and 2.94 min for salbutamol. Selected reaction monitoring (SRM) in positive ionization mode was employed for mass detection. The calibration functions were linear over the concentration range 0.39-100 ng mL(-1). The intra- and inter-day precision of the method were less than 15%. The lower limit of quantification was 0.39 ng mL(-1). The method had been found to be suitable for application to a pharmacokinetic study after oral administration of 20mg ritodrine hydrochloride tablet to 18 healthy female volunteers. The half-life is 2.54+/-0.67 h.  相似文献   

4.
A simple liquid chromatography electrospray ionization mass spectrometry (LC–ESI–MS) method with highly improved sensitivities for the determination of helicid in rat bile, urine, feces and most tissues was developed. The tissues and feces were firstly homogenized mechanically using deionized water as the media. Bile, urine, tissues and feces homogenates were extracted by liquid–liquid extraction with n-butyl alcohol for sample preparation. The subsequent analysis procedures were performed on a Shimadzu LCMS2010A system (electrospray ionization single quadrupole mass analyzer). A Luna C18 column (150 mm × 2.00 mm, 5 μm) was used as the analytical column, while a mixture of acetonitrile and ammonium chloride water solution was used as the mobile phase. The proportions of mobile phase were changed timely according to gradient programs. Chlorinated adducts of molecular ions [M+Cl]? at m/z 319.00 and 363.05 were used to quantify helicid and bergeninum (internal standard), respectively. The method was validated to be accurate, precise and rugged with good linearity. The proposed method was successfully applied to the preclinical tissue distribution and excretion studies of helicid in rats.  相似文献   

5.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometric method is described for the determination of metolazone in human blood. Metolazone was extracted from blood using ethyl acetate and separated on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase consisting of a mixture of acetonitrile, 10 mmol/l ammonium acetate and formic acid (60:40:0.1, v/v/v) was delivered at a flow rate of 0.5 ml/min. Electrospray ionization (ESI) source was operated in positive ion mode. Selected reaction monitoring (SRM) mode using the transitions of m/z 366-->m/z 259 and m/z 321-->m/z 275 were used to quantify metolazone and the lorazepam (internal standard), respectively. The linearity was obtained over the concentration range of 0.5-500 ng/ml for metolazone and the lower limit of quantitation (LLOQ) was 0.5 ng/ml. For each level of QC samples, inter- and intra-run precision was less than 8.07 and 3.56% (relative standard deviation (RSD)), respectively, and the bias was within +/-4.0%. This method was successfully applied to the pharmacokinetic study of metolazone formulation after oral administration to humans.  相似文献   

6.
A selective, rapid and sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method was developed for the quantitative determination of mitiglinide in human plasma. With nateglinide as internal standard, sample pretreatment involved a one-step extraction with diethyl ether of 0.2 mL plasma. The separation was performed on an ACQUITY UPLCtrade mark BEH C(18) column (50 mm x 2.1 mm, i.d., 1.7 microm) with the mobile phase consisting of methanol and 10 mmol/L ammonium acetate (65:35, v/v) at a flow rate of 0.25 mL/min. The detection was carried out by means of electrospray ionization mass spectrometry in positive ion mode with multiple reaction monitoring (MRM). Linear calibration curves were obtained in the concentration range of 1.080-5400 ng/mL, with a lower limit of quantification of 1.080 ng/mL. The intra- and inter-day precision (RSD) values were below 15% and accuracy (RE) was from -3.5% to 7.3% at all QC levels. The method was fully validated and successfully applied to a clinical pharmacokinetic study of mitiglinide in 10 healthy volunteers following oral administration.  相似文献   

7.
A highly sensitive and specific method of rapid resolution liquid chromatography tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode has been developed and validated for pharmacokinetic study of puerarin in rat plasma. Chromatography was carried out on a Zorbax XDB C18 reversed-phase column using a mobile phase comprising a mixture of methanol and 0.05% acetic acid in water (35:65, v/v) with a flow rate of 0.3 mL/min from 0 min to 5.4 min and then 0.6 mL/min from 5.41 min to 12 min. The mass spectrometer operated in ESI positive ionization mode. Multiple reaction monitoring (MRM) was used to measure puerarin and tectoridin (internal standard). The method was sensitive with a detection limit of 0.33 ng/mL. A good linear response was observed over a range of 10-2000 ng/mL in rat plasma. The inter- and intra-day precision ranged from 2.97% to 7.52% and accuracy from 93.70% to 101.60%. This validated method was applied successfully to a pharmacokinetic study in rat plasma after intravenous administration of puerarin. The main pharmacokinetic parameters were as follows: AUC(0→t) 45.37±13.19 (mgh/L), AUC(0→∞) 47.03±14.78 (mgh/L), MRT 1.03±0.46 (h), T(1/2) 1.31±0.31 (h), V(ss) 0.09±0.02 (L), V(z) 0.17±0.04 (L), Cl 0.10±0.04 (L/h).  相似文献   

8.
A simple and highly sensitive liquid chromatography/tandem mass spectrometric (LC/MS/MS) method was developed to compare endogenous cannabinoid levels in nematodes and in brains of rats and humans, with and without prior exposure to ethanol. After liquid-liquid extraction of the lipid fraction from homogenized samples, a reversed-phase sub 2 μm column was used for separating analytes with an isocratic mobile phase. Deuterated internal standards were used in the analysis, and detection was made by triple quadrupole mass spectrometer with multiple reaction monitoring (MRM). Ionization was performed with positive electrospray ionization (ESI). The nematode Caenorhabditis elegans fat-3 mutant, that lacks the necessary enzyme to produce arachidonic acid, the biologic precursor to 2-arachidonoyl glycerol and anandamide, was used as an analyte-free surrogate material for selectivity and calibration studies. The matrix effect was further investigated by in-source multiple reaction monitoring (IS-MRM) and standard addition studies. Selectivity studies demonstrated that the method was free from matrix effects. Good accuracy and precision were obtained for concentrations within the calibration range of 0.4-70 nM and 40-11,000 nM for monitored N-acylethanolamides (NAEs) and acyl glycerols, respectively.  相似文献   

9.
Higenamine is an active ingredient of Aconite root in Chinese herbal medicine and might be used as a new agent for a pharmaceutical stress test and was approved to undergo clinical pharmacokinetic study. Therefore, there exists a need to establish a sensitive and rapid method for the determination of higenamine in human plasma and urine. This paper described a sensitive and rapid method based on liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) for the determination of higenamine in human plasma and urine. Solid-phase extraction (SPE) was used to isolate the compounds from biological matrices followed by injection of the extracts onto an Atlantis dC18 column with isocratic elution. The mobile phase was 0.05% formic acid in water-methanol (40:60, v/v). The mass spectrometry was carried out using positive electrospray ionization (ESI) and data acquisition was carried out in the multiple reaction monitoring (MRM) mode. The method was fully validated over the concentration range of 0.100-50.0 ng/mL and 1.00-500 ng/mL in plasma and urine, respectively. The lower limits of quantification (LLOQs) were 0.100 and 1.00 ng/mL in plasma and urine, respectively. Inter- and intra-batch precision was less than 15% and the accuracy was within 85-115% for both plasma and urine. Extraction recovery was 82.1% and 56.6% in plasma and urine, respectively. Selectivity, matrix effects and stability were also validated in human plasma and urine. The method was applied to the pharmacokinetic study of higenamine hydrochloride in Chinese healthy subjects.  相似文献   

10.
Quantitative analysis of peptides in biological matrices remains a challenging task. This is due to the low dosage and the complexity of both the matrix and the analytical characteristics of peptides. SS-20 is a tetrapeptide compound developed for the treatment of Parkinson's disease. To investigate the pharmacokinetics of SS-20, a sensitive and rapid liquid chromatography coupled with mass spectrometry method was developed and validated. An aliquot of 50 μL plasma sample was extracted via solid phase extraction. The extracts were separated using a hydrophilic interaction liquid chromatography column, and were then detected with a triple quadrupole mass spectrometer using electrospray ionization in positive-ion mode and selected reaction monitoring. The use of a deuterium-labeled internal standard provided acceptable accuracy, precision, and matrix effect. The lower limit of quantification was 0.30 ng/mL. The linear range of the method was from 0.30 to 1000 ng/mL. The intraday and interday precisions were lower than 10.2% in terms of relative standard deviation, and the accuracy was within ±2.1% in terms of relative error. The validated LC-MS/MS method was successfully applied to a pharmacokinetic study of SS-20 following an intravenous or subcutaneous injection administration of 1.0mg/kg to Sprague-Dawley rats.  相似文献   

11.
A sensitive and precise LC-ESI-MS/MS method for the determination of vandetanib (ZD6474) in human plasma and cerebrospinal fluid (CSF) using [(13)C,d(3)]-ZD6474 as an internal standard (ISTD) was developed and validated. Sample preparation consisted of a simple liquid-liquid extraction with tert-butyl methyl ether containing 0.1% or 0.5% ammonium hydroxide. ZD6474 and ISTD were separated on a Kinetex C18 column (2.6 μm, 50 mm × 2.1 mm) at ambient temperature with an isocratic mobile phase (acetonitrile/10mM ammonium formate=50/50, v/v, at pH 5.0) delivered at 0.11 mL/min. The retention time of both compounds was at 1.60 min in a runtime of three min. Detection was achieved by an API-3200 LC-MS/MS system, monitoring m/z 475.1/112.1 and m/z 479.1/116.2 for vandetanib and ISTD, respectively. The method was linear in the range of 0.25-50 ng/mL (R(2) ≥ 0.990) for the CSF curve and from 1.0 to 3000 ng/mL (R(2) ≥ 0.992) for the plasma curve. The mean recovery for vandetanib was 80%. Within-day and between-day precisions were ≤ 8.8% and ≤ 5.9% for CSF and plasma, respectively. Within-day and between-day accuracies ranged from 95.0 to 98.5% for CSF, and from 104.0 to 108.5% for plasma. Analysis of plasma from six different sources showed no matrix effect for vandetanib (MF=0.98, %CV ≤ 4.97, n=6). This method was successfully applied to the analysis of pharmacokinetic samples from children with brain tumors treated with oral vandetanib.  相似文献   

12.
A rapid and sensitive liquid chromatography/mass spectrometry (LC/MS) method was developed and validated for the determination of rimantadine in rat plasma. Rimantadine was extracted by protein precipitation with methanol, and the chromatographic separation was performed on a C(18) column. The total analytical run time was relatively short (4.6 min), and the limit of assay quantification (LLOQ) was 2 ng/mL using 50 microL of rat plasma. Rimantadine and the internal standard (amantadine) were monitored in selected ion monitoring (SIM) mode at m/z 180.2 and 152.1, respectively. The standard curve was linear over a concentration range from 2 to 750 ng/mL, and the correlation coefficients were greater than 0.999. The mean intra- and inter-day assay accuracy ranged from 100.1-105.0% to 100.3-104.0%, respectively, and the mean intra- and inter-day precision was between 1.3-2.3% and 1.8-3.0%, respectively. The developed assay method was successfully applied to a pharmacokinetic study in rats after oral administration of rimantadine hydrochloride at the dose of 20 mg/kg.  相似文献   

13.
A method for the quantification of salidroside, a major biologically active compound in Rhodiola, in rat plasma by on-line SPE LC/MS/MS in negative electrospray mode was developed and validated. A column-switching instrument and two HPLC pumping systems were employed, and salicin was used as the internal standard. A Waters Oasis HLB extraction column and an Agilent TC-C(18) analytical column in a column-switching set-up with gradient elution were utilized. The MS/MS ion transitions monitored were m/z 299.0/119.0 and 285.1/122.9 for salidroside and salicin, respectively. The standard curves were linear within a range of 50-5000 ng/mL using weighted linear regression analysis (1/x). The intra- and inter-day coefficients of variance ranged from 1% to 9%. The recovery was above 90%. The freeze/thaw and long-term stability were validated. This method was subsequently applied to a pharmacokinetic study of salidroside in rats.  相似文献   

14.
The main phospholipids in rat peritoneal surface layer were analyzed by normal-phase high-performance liquid chromatography (HPLC) coupled with electrospray ionization (ESI) ion-trap mass spectrometry (MS). By using a silica gel column and a gradient of hexane/isopropanol/water as mobile phase containing 5 mmol/L ammonium formate as modifiers, a baseline separation of glycerophosphoehtanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylcholine (PC), sphingomyelin (SM) and lyso-phosphatidylcholine (LPC) was obtained and more than 90 phospholipid constituents in rat peritoneal surface were identified and determined by on-line ion-trap MS detection. The major ethanolamine glycerophospholipids in rat peritoneal surfaces were plasmalogens that were highly enriched in polyunsaturated fatty acids at the sn-2 position. In addition, the fragmentation patterns for each phospholipid class by the ion-trap MS were discussed.  相似文献   

15.
A sensitive and highly specific method for the determination of LSD and N-demethyl-LSD in urine, using combined liquid chromatography and mass spectrometry (LC-MS) with electrospray ionization, has been developed. Extrelut-3 extraction cartridges were used for a basic sample clean-up. Elution was obtained by toluene-diethyl ether (60:40, v/v). A Nucleosil C18 (150×1 mm I.D.) reversed-phase column was used for the chromatographic separation, together with a mixture of 2 mM ammonium formate buffer (pH 3) and acetonitrile (70:30, v/v) as mobile phase. Recoveries were 93 and 80%, detection limits 0.025 and 0.035 ng/ml for LSD and N-demethyl-LSD, respectively. Intra-assay precision, studied at four concentrations, was better than 9% at the ng/ml range and better than 14% at 0.10 ng/ml for both compounds. Limits of quantitation were 0.05 and 0.10 ng/ml for LSD and N-demethyl-LSD, respectively. Reproducibility was good and linearity excellent for LSD in the range from 0.05 to 20 ng/ml (r>0.9999, N=7).  相似文献   

16.
Ceruloplasmin has ferroxidase activity and plays an essential role in iron metabolism. In this study, a site-specific glycosylation analysis of human ceruloplasmin (CP) was carried out using reversed-phase high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). A tryptic digest of carboxymethylated CP was subjected to LC-ESI-MS/MS. Product ion spectra acquired data-dependently were used for both distinction of the glycopeptides from the peptides using the carbohydrate B-ions, such as m/z 204 (HexNAc) and m/z 366 (HexHexNAc), and identification of the peptide moiety of the glycopeptide based on the presence of the b- and y-series ions derived from the peptide. Oligosaccharide composition was deduced from the molecular weight calculated from the observed mass of the glycopeptide and theoretical mass of the peptide. Of the seven potential N-glycosylation sites, four (Asn119, Asn339, Asn378, and Asn743) were occupied by a sialylated biantennary or triantennary oligosaccharide with fucose residues (0, 1, or 2). A small amount of sialylated tetraantennary oligosaccharide was detected. Exoglycosidase digestion suggested that fucose residues were linked to reducing end GlcNAc in biantennary oligosaccharides and to reducing end and/or alpha1-3 to outer arms GlcNAc in triantennary oligosaccharides and that roughly one of the antennas in triantennary oligosaccharides was alpha2-3 sialylated and occasionally alpha1-3 fucosylated at GlcNAc.  相似文献   

17.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantitation of tadalafil (I) in human plasma, a new selective, reversible phosphodiesterase 5 inhibitor. The analyte and internal standard (sildenafil, II) were extracted by liquid-liquid extraction with diethyl ether/dichloromethane (70/30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on reverse phase Xterra MS C18 column with a mobile phase of 10mM ammonium formate/acetonitrile (10/90, v/v, pH adjusted to 3.0 with formic acid). The protonate of analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 390.4 --> 268.0 and m/z 475.5 --> 58.3 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 10-1000 ng/mL for tadalafil in human plasma. The lower limit of quantitation was 10 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Run time of 1.2 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

18.
We present an optimized and validated liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method for the simultaneous measurement of concentrations of different ceramide species in biological samples. The method of analysis of tissue samples is based on Bligh and Dyer extraction, reverse-phase high-performance liquid chromatography separation, and multiple reaction monitoring of ceramides. Preparation of plasma samples also requires isolation of sphingolipids by silica gel column chromatography prior to LC-ESI-MS/MS analysis. The limits of quantification were in a range of 0.01-0.50 ng/ml for distinct ceramides. The method was reliable for inter- and intraassay precision, accuracy, and linearity. Recoveries of ceramide subspecies from human plasma, rat liver, and muscle tissue were 78 to 91%, 70 to 99%, and 71 to 95%, respectively. The separation and quantification of several endogenous long-chain and very-long-chain ceramides using two nonphysiological odd chain ceramide (C17 and C25) internal standards was achieved within a single 21-min chromatographic run. The technique was applied to quantify distinct ceramide species in different rat tissues (muscle, liver, and heart) and in human plasma. Using this analytical technique, we demonstrated that a clinical exercise training intervention reduces the levels of ceramides in plasma of obese adults. This technique could be extended for quantification of other ceramides and sphingolipids with no significant modification.  相似文献   

19.
20.
A rapid method for the quantification of amiodarone and desethylamiodarone in animal plasma using high-performance liquid chromatography combined with UV detection (HPLC-UV) is presented. The sample preparation includes a simple deproteinisation step with acetonitrile. In addition, a sensitive method for the quantification of amiodarone and desethylamiodarone in horse plasma and urine using high-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) is described. The sample preparation includes a solid-phase extraction (SPE) with a SCX column. Tamoxifen is used as an internal standard for both chromatographic methods. Chromatographic separation is achieved on an ODS Hypersil column using isocratic elution with 0.01% diethylamine and acetonitrile as mobile phase for the HPLC-UV method and with 0.1% formic acid and acetonitrile as mobile phase for the LC-MS/MS method. For the HPLC-UV method, good linearity was observed in the range 0-5 microg ml(-1), and in the range 0-1 microg ml(-1) for the LC-MS/MS method. The limit of quantification (LOQ) was set at 50 and 5 ng ml(-1) for the HPLC-UV method and the LC-MS/MS method, respectively. For the UV method, the limit of detection (LOD) was 15 and 10 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs of the LC-MS/MS method in plasma were much lower, i.e. 0.10 and 0.04 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The LODs obtained for the urine samples were 0.16 and 0.09 ng ml(-1) for amiodarone and desethylamiodarone, respectively. The methods were shown to be of use in horses. The rapid HPLC-UV method was used for therapeutic drug monitoring after amiodarone treatment, while the LC-MS/MS method showed its applicability for single dose pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号