共查询到20条相似文献,搜索用时 15 毫秒
1.
JÉRÔME VRANCKEN CHRISTIAN BROCHMANN RENATE A. WESSELINGH 《Biological journal of the Linnean Society. Linnean Society of London》2009,98(1):1-13
The impact of climate fluctuations during the Pleistocene on the geographic structure of genetic variation in plant populations is well documented, but there is a lack of studies of annual species at the European scale. The present study aimed to infer the history of the widespread European annual Rhinanthus angustifolius C. C. Gmelin (Orobanchaceae). We explored variation in chloroplast DNA (cpDNA) sequences and amplified fragment length polymorphism (AFLP) in twenty-nine populations covering the entire distribution area of the species. Five AFLP groups were identified, suggesting at least two glacial refugial areas: one area in southwestern Europe and one large eastern area in the Balkan/Caucasus. Recolonization of previously glaciated areas mainly took place from the east of Europe. Despite the difference in life-history traits, the patterns found for the annual R. angustifolius show similarities with those of perennial species in terms of genetic diversity and geographic organization of genetic variation. Although organelle markers have typically been preferred in phylogeographic studies, the cpDNA variation in R. angustifolius did not show any clear geographic structure. The absence of geographic structure in the cpDNA variation may reflect persistence of ancestral polymorphisms or hybridization and introgression with closely-related species. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 1–13. 相似文献
2.
3.
Riginos C 《Molecular ecology》2010,19(20):4389-4390
How and why ecological communities change their species membership over time and space is a central issue in ecology and evolution. Phylogeographic approaches based on animal mitochondrial DNA sequences have been important for revealing historical patterns of individual species and can provide qualitative comparisons among species. Exciting new methods, particularly implementing approximate Bayesian computation (ABC – Beaumont et al. 2002 ), now allow model‐based quantitative comparisons among species and permit the probabilistic exploration of alternative community‐level hypotheses (see review by Hickerson et al. 2010 ). In this issue of Molecular Ecology, Ilves et al. (2010) use an ABC approach to bring fresh insights into the well‐studied question of how North Atlantic coastal species contracted and expanded their ranges in response to late Pleistocene/Holocene climate fluctuations. 相似文献
4.
The chloroplast phylogeography of two peat mosses (Sphagnum fimbriatum and Sphagnum squarrosum) with similar distributions but different life history characteristics was investigated in Europe. Our main aim was to test whether similar distributions reflect similar phylogeographic and phylodemographic processes. Accessions covering the European distributions of the species were collected and approx. 2000 bp of the chloroplast genome of each species was sequenced. Maximum parsimony, statistical parsimony and phylodemographic analyses were used to address the question of whether these species with similar distributions show evidence of similar phylogeographic and phylodemographic processes. The chloroplast haplotypes of the currently spreading species S. fimbriatum showed strong geographic structure, whereas those of S. squarrosum, which has stable historical population sizes, showed only very weak geographic affinity and were widely distributed. We hypothesize that S. fimbriatum survived the last glaciations along the Atlantic coast of Europe, whereas S. squarrosum had numerous, scattered refugia in Europe. The dominance of one haplotype of S. fimbriatum across almost all of Europe suggests rapid colonization after the last glacial maximum. We hypothesize that high colonizing ability is an inherent characteristic of the species and its recent expansion in Europe is a response to climate change. 相似文献
5.
Achyut Kumar Banerjee Wuxia Guo Sitan Qiao Weixi Li Fen Xing Yuting Lin Zhuangwei Hou Sen Li Ying Liu Yelin Huang 《Ecology and evolution》2020,10(14):7349-7363
Phylogeographic forces driving evolution of sea‐dispersed plants are often influenced by regional and species characteristics, although not yet deciphered at a large spatial scale for many taxa like the mangrove species Heritiera littoralis. This study aimed to assess geographic distribution of genetic variation of this widespread mangrove in the Indo‐West Pacific region and identify the phylogeographic factors influencing its present‐day distribution. Analysis of five chloroplast DNA fragments’ sequences from 37 populations revealed low genetic diversity at the population level and strong genetic structure of H. littoralis in this region. The estimated divergence times between the major genetic lineages indicated that glacial level changes during the Pleistocene epoch induced strong genetic differentiation across the Indian and Pacific Oceans. In comparison to the strong genetic break imposed by the Sunda Shelf toward splitting the lineages of the Indian and Pacific Oceans, the genetic differentiation between Indo‐Malesia and Australasia was not so prominent. Long‐distance dispersal ability of H. littoralis propagules helped the species to attain transoceanic distribution not only across South East Asia and Australia, but also across the Indian Ocean to East Africa. However, oceanic circulation pattern in the South China Sea was found to act as a barrier creating further intraoceanic genetic differentiation. Overall, phylogeographic analysis in this study revealed that glacial vicariance had profound influence on population differentiation in H. littoralis and caused low genetic diversity except for the refugia populations near the equator which might have persisted through glacial maxima. With increasing loss of suitable habitats due to anthropogenic activities, these findings therefore emphasize the urgent need for conservation actions for all populations throughout the distribution range of H. littoralis. 相似文献
6.
Understanding the factors that shape species’ distributions is a key topic in biogeography. As climates change, species can either cope with these changes through evolution, plasticity or by shifting their ranges to track the optimal climatic conditions. Ecological niche modeling (ENM) is a widespread technique in biogeography that estimates the niche of the organism by using occurrences and environmental data to estimate species’ potential distributions. ENMs are often criticized for failing to take species’ dispersal abilities into consideration. Here, we attempt to fill this gap by combining ENMs with dispersal and corridor modeling to study the range dynamics of North American spadefoot toads (Scaphiopodidae) over the Holocene. We first estimated the current and past distributions of spadefoot toads and then estimated their past distributions from the Last Glacial Maximum (LGM) to the present day. Then, we estimated how each taxon recolonized North American by using dispersal and corridor modeling. By combining these two modeling approaches we were able to 1) estimate the LGM refugia used by the North American spadefoot toads, 2) further refine these projections by estimating which of the putative LGM refugia contributed to the recolonization of North America via dispersal, and 3) estimate the relative influence of each LGM refugium to the current species’ distributions. The models were tested using previously published phylogeographic data, revealing a high degree of congruence between our models and the genetic data. These results suggest that combining ENMs and dispersal modeling over time is a promising approach to investigate both historical and future species’ range dynamics. 相似文献
7.
Gregor A. Wachter Wolfgang Arthofer Thomas Dejaco Lukas J. Rinnhofer Birgit C. Schlick‐Steiner 《Molecular ecology》2012,21(20):4983-4995
Mechanisms of survival during the Pleistocene glaciation periods have been studied for more than a century. Until now, molecular studies that confirmed animal survival on Alpine nunataks, that is, ice‐free summits surrounded by glaciers, were restricted to peripheral areas. Here, we search for molecular signatures of inner‐Alpine survival of the narrow endemic and putatively parthenogenetic Alpine jumping bristletail Machilis pallida combining mitochondrial and AFLP data from its three known populations. The mitochondrial data indicate survival on both peripheral and central nunataks, the latter suggesting that refugia in the centre of the Alpine main ridge were more widespread than previously recognized. Incongruences between mitochondrial and AFLP patterns suggest a complex evolutionary history of the species and may be explained via parallel fixation of parthenogenesis of different origins during the last glacial maximum. We suggest that the inferred parthenogenesis may have been essential for central nunatak survival, but may pose a serious threat for M. pallida in consideration of the present climatic changes. 相似文献
8.
- The polymitarcyid burrowing mayfly, Ephoron nigridorsum, adapts to extreme continental climate by undergoing egg diapause during the long and cold winter and rapid growth during the short and hot summer. We performed genetic analyses of the mitochondrial COI gene of E. nigridorsum from 10 local populations of the Selenge River basin in Mongolia to examine the historical population dynamics during the last glacial period.
- We observed high overall genetic diversity and high intra‐population variation. However, we could find no geographic cluster of haplotypes and no correlation between genetic differentiation and geographic distance within the river basin.
- The long‐chain haplotype network and multimodal mismatch distribution implied that the population size has remained constant for a long period of time. The Bayesian skyline plot indicated an expansion of the population size during cooling through the last glacial period and a stable population size from the post‐glacial period to the present day.
- Our results suggest that the Selenge River basin provided a comparatively stable habitat for E. nigridorsum during the last glacial period when the decrease in mean air temperature in summer (1–7 °C colder) is smaller than that of winter temperature (7–15 °C colder) according to botanical records. The mayfly has been probably capable of adapting to a more extreme climate – i.e. with a larger temperature difference between winter and summer – during the last glacial period by undergoing egg diapause, as montane and arctic species of cold‐adapted aquatic insects have expanded their distributions and population sizes during this period.
9.
European black pine (Pinus nigra Arn.) is a widely distributed Mediterranean conifer. To test the hypothesis that fragmented populations in western Europe survived in situ during the last glacial rather than having been re-colonized in the postglacial period, genetic variation was assessed using a suite of 10 chloroplast DNA microsatellites. Among 311 individuals analysed, 235 haplotypes were detected revealing high levels of chloroplast haplotype diversity in most populations. Bayesian analysis using a model of linked loci, with no prior assumption of population structure, assigned individuals to 10 clusters that corresponded well with the six predefined sampling regions, while an analysis carried out at the population level and assuming unlinked loci, recovered the original six sampling regions. This regional structure was supported by a biogeographical analysis that detected five barriers, with the two most significant separating Alps from Corsica and southern Italy, and southern Spain from the Pyrenees. No signals of demographic expansion were detected, and comparisons of R(ST) with pR(ST) suggested that a stepwise mutational model was important in regional differentiation, but not in population-within-region differentiation. These tests support long-term persistence of the species within the six regions. The temporal depth estimate, assuming a high mutation rate in coalescent modelling, placed the deepest split between the Alps and the other regions at about 150 000 years ago, and the most recent split of Pyrenees from southern France at about 30 000 years ago. Taken together, the data suggest that chloroplast DNA is structured in black pine and disjunct populations in western Europe are likely to have been present during the Last Glacial Maximum. 相似文献
10.
In the Southern Hemisphere there has been little phylogeographical investigation of forest refugia sites during the last glacial. Hooker's spleenwort, Asplenium hookerianum, is a fern that is found throughout New Zealand. It is strongly associated with forest and is a proxy for the survival of woody vegetation during the last glacial maximum. DNA sequence data from the chloroplast trnL-trnF locus were obtained from 242 samples, including c. 10 individuals from each of 21 focal populations. Most populations contained multiple, and in many cases unique, haplotypes, including those neighbouring formerly glaciated areas, while the predominant inference from nested clade analysis was restricted gene flow with isolation by distance. These results suggest that A. hookerianum survived the last glacial maximum in widespread populations of sufficient size to retain the observed phylogeography, and therefore that the sheltering woody vegetation must have been similarly abundant. This is consistent with palynological interpretations for the survival in New Zealand of thermophilous forest species at considerably smaller distances from the ice sheets than recorded for the Northern Hemisphere. Eastern and central North Island populations of A. hookerianum were characterized by a different subset of haplotypes to populations from the remainder of the country. A similar east-west phylogeographical pattern has been detected in a diverse array of taxa, and has previously been attributed to recurrent vulcanism in the central North Island. 相似文献
11.
对我国14个地区的药食同源植物薤白(Allium macrostemon)的叶绿体基因片段(psbA-trnH、rps16和trnL-F)与核基因片段(ITS)进行测序分析,揭示薤白的遗传变异分布式样、单倍型地理分布格局,并推断其在第四纪冰期的避难所。结果表明:薤白叶绿体基因(cpDNA)遗传多样性低于核基因(nrDNA)遗传多样性(cpDNA:HT=0.868;nrDNA:HT=0.890)。cpDNA和nrDNA的分子变异分析(AMOVA)结果显示:薤白遗传变异主要发生在居群间(cpDNA:92.84%;nrDNA:98.40%),存在遗传分化(cpDNA:Nst=0.918,Gst=0.866,Fst=0.928;nrDNA:Nst=0.984,Gst=0.855,Fst=0.984),且Nst均大于Gst,表明该物种具有明显的谱系地理结构。在薤白居群中,共检测到11个叶绿体单倍型和14个nrDNA基因型;单倍型网络图及地理分布图表明,叶绿体单倍型H3、核DNA基因型H1频率最高,位于网络结构图的中心位置,可能为古老单倍型。此外,冰期避难所假说认为遗传多样性高、拥有古老单倍型和较多特有单倍型的区域可能是该物种的冰期避难所,因此推测薤白在第四纪冰期时可能在大盘山、天水和通化地区存在多个冰期避难所。这些分析可为类似草本植物的进化提供参考,丰富对东亚草本植物分子系统与生物地理学的认识。 相似文献
12.
MARTÍ CORTEY MANUEL VERA CARLES PLA JOSÉ-LOÍS GARCÍA-MARÍN 《Biological journal of the Linnean Society. Linnean Society of London》2009,97(4):904-917
The phylogeography of Atlantic brown trout ( Salmo trutta ) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 904–917. 相似文献
13.
基于叶绿体微卫星研究鄂报春谱系遗传结构 总被引:2,自引:0,他引:2
鄂报春Primula obconica作为一种广泛栽培的园艺植物,其野生居群的遗传多样性及遗传结构的研究还少见报道。本文通过叶绿体微卫星分析了17个鄂报春野生居群(共278个个体),共发现4个多态性位点(16个等位基因),得到14个单倍型。结果表明鄂报春具有很高的总基因多样性(HT=0.971)和极低的居群内基因多样性(HS=0.028);分子方差分析(AMOVA)显示98%的变异存在于居群间。这些结果说明早期的生境片断化及有限的种子传播能力是造成当前遗传结构的重要原因。Nst值显著大于Gst值,表明关系相近的单倍型会出现在相同的地区内,同时最小生成树(MST)的分析结果证实了这样的结论。我们在最小生成树的两个组中推断出一些古老单倍型,并推测在冰期时湖北和我国的西南地区可能是该物种的避难所。 相似文献
14.
Hiroyuki Higashi Shota Sakaguchi Hajime Ikeda Yuji Isagi Hiroaki Setoguchi 《Botanical journal of the Linnean Society. Linnean Society of London》2013,173(1):46-63
Range shifts during the Pleistocene shaped the unique phylogeographical structures of numerous species. Accompanying species migration, sister taxa may have experienced multiple introgression events. Here, we report the signature of introgression events in multiple areas in Schizocodon, herbs endemic to Japan, using amplified fragment length polymorphism (AFLP) fingerprinting and plastid DNA haplotyping in 48 populations. Although the present distributions of S. soldanelloides and S. ilicifolius are mainly allopatric, the species share plastid DNA haplotypes in each region (north‐eastern, north‐central, south‐central and south‐western Japan); in contrast, the specific groups were highly supported by AFLP analyses. These results support the occurrence of multiple introgression events in Schizocodon. Notably, the disjunct plastid haplotypes found only in S. ilicifolius var. intercedens suggest complete plastid DNA replacement at local areas from S. soldanelloides into S. ilicifolius var. ilicifolius. Furthermore, we found that S. soldanelloides experienced range contraction and expansion during glacial and interglacial cycles based on mismatch distribution analysis and ecological niche modelling. Based on several pieces of evidence, our study supports the idea that historical range shifts associated with Pleistocene climatic oscillations favoured multiple and regional introgression events in Schizocodon. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 46–63. 相似文献
15.
Douglas E. Soltis Matthew A. Gitzendanner Darren D. Strenge Pamela S. Soltis 《Plant Systematics and Evolution》1997,206(1-4):353-373
Molecular studies of plants from the Pacific Northwest of North America suggest a recurrent pattern of genetic differentiation and geographic structuring. In each of five angiosperms and one fern species representing diverse life histories, cpDNA data indicate two clades of populations that are geographically structured. A northern group comprises populations from Alaska to central or southern Oregon, whereas populations from central Oregon southward to northern California form a southern group. In several of these species, a few populations having southern genotypes may have survived in glacial refugia further north in the Olympic Peninsula, Queen Charlotte Islands, and Prince of Wales Island. Allozyme data reveal a similar pattern of differentiation in several other plants from the Pacific Northwest. North-south partitioning of genotypes has also been reported for several animal species from this region. On a broader geographic scale, northsouth partitioning of genotypes has also been observed in other plants from western North America having a variety of geographic distributions. Some species also display a reduction of genetic variability in the northern portion of their range compared to the south. The data suggest strongly that past glaciation profoundly influenced the genetic architecture of the flora and fauna of the Pacific Northwest. Two alternative hypotheses are advanced to explain the geographic structuring of genotypes. First, past glaciation may have created discontinuities in the geographic distributions of plant species, with populations surviving in several well-isolated northern and southern refugia. Following glaciation, migration of genetically differentiated, once-isolated populations resulted in the formation of a continuous geographic distribution with a major genetic discontinuity. Alternatively, plants survived and subsequently migrated northward from a southern refugium, and a genotype became fixed in one or a few populations at the leading edge of recolonization. Subsequent long-distance dispersal from this leading edge resulted in a relatively uniform northern genotype that differs from the southern genotype(s). Whatever the underlying mechanism, Pleistocence glaciation may have molded the intraspecific genetic architecture of both plants and animals from the Pacific Northwest in a geographically similar manner. Future studies should seek to obtain a comprehensive phylogeography for regions that includes a diversity of both plants and animals.Dedicated to emer. Univ.-Prof. DrFriedrich Ehrendorfer on the occasion of his 70th birthday 相似文献
16.
Analyses of mitochondrial (mt) DNA and microsatellite variation were carried out to examine the relationships between 10 freshwater populations of three-spined sticklebacks Gasterosteus aculeatus along the eastern coast of the Adriatic Sea. Partial sequences of the mtDNA control region and cytochrome b gene, in addition to 15 microsatellite loci, were used to analyse populations from four isolated river catchments. Results uncovered an Adriatic lineage that was clearly divergent from the European lineage, and confirmed that the most divergent and ancient populations are located within the Adriatic lineage as compared with other European populations. Two northern Adriatic populations formed independent clades within the European mitochondrial lineage, suggesting different colonization histories of the different Adriatic populations. Nuclear marker analyses also indicated deep divergence between Adriatic and European populations, albeit with some discordance between the mtDNA phylogeny of the northern Adriatic populations, further highlighting the strong differentiation among the Adriatic populations. The southern populations within the Adriatic lineage were further organized into distinct clades corresponding to respective river catchments and sub-clades corresponding to river tributaries, reflecting a high degree of population structuring within a small geographic region, concurrent with suggestions of existence of several microrefugia within the Balkan Peninsula. The highly divergent clades and haplotypes unique to the southern Adriatic populations further suggest, in accordance with an earlier, more limited survey, that southern Adriatic populations represent an important reservoir for ancient genetic diversity of G. aculeatus. 相似文献
17.
David R. Roberts Andreas Hamann 《Proceedings. Biological sciences / The Royal Society》2015,282(1804)
North American tree species, subspecies and genetic varieties have primarily evolved in a landscape of extensive continental ice and restricted temperate climate environments. Here, we reconstruct the refugial history of western North American trees since the last glacial maximum using species distribution models, validated against 3571 palaeoecological records. We investigate how modern subspecies structure and genetic diversity corresponds to modelled glacial refugia, based on a meta-analysis of allelic richness and expected heterozygosity for 473 populations of 22 tree species. We find that species with strong genetic differentiation into subspecies had widespread and large glacial refugia, whereas species with restricted refugia show no differentiation among populations and little genetic diversity, despite being common over a wide range of environments today. In addition, a strong relationship between allelic richness and the size of modelled glacial refugia (r2 = 0.55) suggest that population bottlenecks during glacial periods had a pronounced effect on the presence of rare alleles. 相似文献
18.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans. 相似文献
19.
Pedro Abellán Jens‐Christian Svenning 《Biological journal of the Linnean Society. Linnean Society of London》2014,113(1):13-28
In Europe, southern peninsulas served as major refugia during Pleistocene cold periods. However, growing evidence has revealed complex patterns of glacial survival within these southern regions, with multiple glacial refugia within each larger refugial area. We investigated the extent to which patterns of endemism and phylogeographic are concordant across animal species in the Iberian Peninsula, one of the most important unglaciated areas in Europe during the Pleistocene, can be explained in terms of climatic stability. We found that historical climatic stability (notably climate velocity measures integrating macroclimatic shifts with local spatial topoclimate gradients) was often among the most important predictors of endemic species richness for different taxonomic groups using models that also incorporated measures of modern climate. Furthermore, for some taxonomic groups, climatic stability was also correlated with patterns of spatial concordance in interpopulation genetic divergence across multiple taxa, and private haplotypes were more frequently found in relatively stable areas. Overall, our results suggest that both endemism patterns and cross‐taxa concordant phylogeographic patterns across the Iberian Peninsula to some extent are linked to spatial variation in Late Quaternary climate stability, in agreement with the proposed ‘refugia‐within‐refugia’ scenario. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 13–28. 相似文献
20.
Previous phylogeographical and palaeontological studies on the biota of northern North America have revealed a complex scenario of glacial survival in multiple refugia and differing patterns of postglacial recolonization. Many putative refugial regions have been proposed both north and south of the ice sheets for species during the Last Glacial Maximum, but the locations of many of these refugia remain a topic of great debate. In this study, we used a phylogeographical approach to elucidate the refugial and recolonization history of the herbaceous plant species Orthilia secunda in North America, which is found in disjunct areas in the west and east of the continent, most of which were either glaciated or lay close to the limits of the ice sheets. Analysis of 596 bp of the chloroplast trnS-trnG intergenic spacer and five microsatellite loci in 84 populations spanning the species' range in North America suggests that O. secunda persisted through the Last Glacial Maximum (LGM) in western refugia, even though palaeodistribution modelling indicated a suitable climate envelope across the entire south of the continent. The present distribution of the species has resulted from recolonization from refugia north and south of the ice sheets, most likely in Beringia or coastal regions of Alaska and British Columbia, the Washington/Oregon region in the northwest USA, and possibly from the region associated with the putative 'ice-free corridor' between the Laurentide and Cordilleran ice sheets. Our findings also highlight the importance of the Pacific Northwest as an important centre of intraspecific genetic diversity, owing to a combination of refugial persistence in the area and recolonization from other refugia. 相似文献